Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Molecular coating cleans up noisy quantum light

Quantum technologies demand perfection: one photon at a time, every time, all with the same energy. Even tiny deviations in the number or energy of photons can derail devices, threatening the performance of quantum computers that someday could make up a quantum internet.

While this level of precision is difficult to achieve, Northwestern University engineers have developed a novel strategy that makes quantum light sources, which dispense single photons, more consistent, precise and reliable.

In a new study, the team coated an atomically thin semiconductor (tungsten diselenide) with a sheetlike organic molecule called PTCDA. The coating transformed the tungsten diselenide’s behavior—turning noisy signals into clean bursts of single photons. Not only did the coating increase the photons’ spectral purity by 87%, but it also shifted the color of photons in a controlled way and lowered the photon activation energy—all without altering the material’s underlying semiconducting properties.

Energy harvesters surpass Carnot efficiency using non-thermal electron states

Harnessing quantum states that avoid thermalization enables energy harvesters to surpass traditional thermodynamic limits such as Carnot efficiency, report researchers from Japan. The team developed a new approach using a non-thermal Tomonaga-Luttinger liquid to convert waste heat into electricity with higher efficiency than conventional approaches. These findings pave the way for more sustainable low-power electronics and quantum computing.

Energy harvesters, or devices that capture energy from environmental sources, have the potential to make electronics and industrial processes much more efficient. We are surrounded by waste heat, generated everywhere by computers, smartphones, , and factory equipment. Energy-harvesting technologies offer a way to recycle this lost energy into useful electricity, reducing our reliance on other power sources.

However, conventional energy-harvesting methods are constrained by the laws of thermodynamics. In systems that rely on , these laws impose fundamental caps on heat conversion efficiency, which describes the ratio of the generated electrical power and the extracted heat from the waste heat, for example, is known as the Carnot efficiency. Such thermodynamic limits, like the Curzon-Ahlborn efficiency, which is the heat conversion efficiency under the condition for obtaining the maximum electric power, have restricted the amount of useful power that can be extracted from waste heat.

AI could make it easier to create bioweapons that bypass current security protocols

Artificial intelligence is transforming biology and medicine by accelerating the discovery of new drugs and proteins and making it easier to design and manipulate DNA, the building blocks of life. But as with most new technologies, there is a potential downside. The same AI tools could be used to develop dangerous new pathogens and toxins that bypass current security checks. In a new study from Microsoft, scientists employed a hacker-style test to demonstrate that AI-generated sequences could evade security software used by DNA manufacturers.

“We believe that the ongoing advancement of AI-assisted design holds great promise for tackling critical challenges in health and the , with the potential to deliver overwhelmingly positive impacts on people and society,” commented the researchers in their paper published in the journal Science. “As with other emerging technologies, however, it is also crucial to proactively identify and mitigate risks arising from novel capabilities.”

Densifying argyrodite could prevent dendrite formation in all-solid-state batteries

All-solid-state batteries are emerging energy storage solutions in which flammable liquid electrolytes are substituted by solid materials that conduct lithium ions. In addition to being safer than lithium-ion batteries (LIBs) and other batteries based on liquid electrolytes, all-solid-state batteries could exhibit greater energy densities, longer lifespans and shorter charging times.

Despite their potential, most all– introduced to date do not perform as well as expected. One main reason for this is the formation of so-called lithium dendrites, needle-like metal structures that form when the lithium inside the batteries is unevenly deposited during charging.

These structures can pierce solid electrolytes, which can adversely impact the performance of batteries and potentially elicit dangerous reactions. Identifying strategies to prevent the formation of dendrites in solid electrolytes, while also achieving high energy densities and overall battery performance is thus of key importance to enable the commercialization and widespread deployment of all-solid-state batteries.

Spinel-type sulfide semiconductors achieve room-temperature light emission across violet to orange spectrum

A spinel-type sulfide semiconductor that can emit light from violet to orange at room temperature has been developed by researchers at Science Tokyo, overcoming the efficiency limitations of current LED and solar cell materials. The material, (Zn, Mg)Sc2S4, can be chemically tuned to switch between n-type and p-type conduction, leading to future pn homojunction devices. This versatile semiconductor offers a practical path toward the development of more efficient LEDs and solar cells.

Tiny sugars in the brain disrupt emotional circuits, fueling depression

Depression is a serious disorder that disrupts daily life through lethargy, sleep disturbance, and social withdrawal, and also increases the risk of suicide. The number of depression patients has steadily increased over the years, affecting more than 280 million people worldwide as of 2025. Now, researchers have uncovered a new pathological mechanism that could provide clues for the diagnosis and treatment of depression.

A research team led by C. Justin Lee and Lee Boyoung at the Institute for Basic Science (IBS) has identified a new molecular pathway in the brain that directly links abnormal sugar modifications in proteins to depressive behaviors. Specifically, disrupts sugar chains (O-glycans) attached to proteins in the , thereby triggering depression.

The findings, published in Science Advances, open new possibilities for targeted therapies for .

Brain network active at birth linked to social behavior later in life

Paying less attention to faces is one of the key markers of autism spectrum disorder. But while researchers have begun to uncover the brain network that supports processing of social stimuli such as faces, gaze, and speech, little is known about how and when it begins to develop.

In a new study, Yale researchers have now found that this network is already quite active at birth or shortly thereafter, a finding that provides insight into the that underlie social behaviors later in life.

The study was published in Biological Psychiatry Global Open Science.

High-density brain probe reveals distinctive electrical patterns of cell types during behavior

Trying to document how single brain cells participate in networks that govern behavior is a daunting task. Brain probes called Neuropixels, which feature high-density silicon arrays, have enabled scientists to collect electrophysiological data of this nature from a variety of animals. These include fish, reptiles, rodents and primates, as well as humans.

Neuropixels, which come in several versions, record from hundreds to thousands of neurons simultaneously. Neurons are nerve cells that receive, process and transmit information.

While the data collected has led to insights on the neural basis of perception and decision-making, those probes cannot sample fine-scale brain structures. They also are limited in resolving (separately distinguishing) the electrical fields around individual brain cells.

Accelerated Gulf of Maine warming may pose a serious threat to American lobsters

The Gulf of Maine is warming faster than 99% of the world’s oceans, raising concerns for its $2 billion-a-year American lobster fishery. Scientists at William & Mary’s Batten School & VIMS have been studying the impacts of ocean acidification and warming on lobster reproduction, and the results of their most recent research suggest the rising temperatures pose the greatest risk.

Utilizing a purpose-built experimental facility designed by Professor Emily Rivest and housed in the Batten School of Coastal & Marine Sciences & VIMS’ Seawater Research Laboratory, the researchers exposed egg-bearing lobsters from the Gulf of Maine to water temperature and pH conditions that mimic those predicted for 2060.

Published in the journal Marine Ecology Progress Series, the results revealed that the embryos can handle ocean acidification surprisingly well, but increased temperatures led to distinct stress responses that ultimately resulted in smaller larvae.

Ultra-thin sodium films offer low-cost alternative to gold and silver in optical technologies

From solar panels to next-generation medical devices, many emerging technologies rely on materials that can manipulate light with extreme precision. These materials—called plasmonic materials—are typically made from expensive metals like gold or silver. But what if a cheaper, more abundant metal could do the job just as well or better?

That’s the question a team of researchers set out to explore. The challenge? While is abundant and lightweight, it’s also notoriously unstable and difficult to work with in the presence of air or moisture—two unavoidable parts of real-world conditions. Until now, this has kept it off the table for practical optical applications.

Researchers from Yale University, Oakland University, and Cornell University have teamed up to change that. By developing a new technique for structuring sodium into ultra-thin, precisely patterned films, they found a way to stabilize the and make it perform exceptionally well in light-based applications.

/* */