Google’s second generation of its AI mathematics system combines a language model with a symbolic engine to solve complex geometry problems better than International Mathematical Olympiad (IMO) gold medalists.
Then came gene targeting technologies, like CRISPR, over 10 years ago. With these technologies we can delete, modify, add, or change any gene in any organism’s DNA and it’s easy and cheap. Are you thinking what I’m thinking? Where are my Pokémon?
The scientific industrial complex is fundamentally broken. Scientists are trapped in a system of their own creation that values paywalled publications over real progress. If they can’t even make knowledge freely available, how can they be expected to push the boundaries of innovation? A field built on gatekeeping will never lead the future.
The real question isn’t whether we can do this. The real question is what comes next. The first steps are already happening in the lab of my new company, the Los Angeles Project (LAP). We are learning to harvest large amounts of embryos and eggs from different animal species so we can understand the development of life on a scale no one has tried before. We are editing genes and injecting DNA with micro-precision, sculpting biology at its most fundamental level.
Unlock the full potential of CRISPR technology while ensuring precision and safety! In this video, we dive deep into the science of CRISPR gene editing, explore the challenges of off-target effects, and reveal cutting-edge strategies to minimize risks.
📌 Key Topics Covered:
1️⃣ What is CRISPR?
Discover the origins of CRISPR-Cas9, its revolutionary impact on genetics, agriculture, and medicine, and the latest advancements like base editing and AI-driven optimization.
2️⃣ Understanding Off-Target Effects.
Learn why unintended DNA modifications occur, how gRNA promiscuity and nuclease activity contribute to risks, and proven mitigation strategies (e.g., HiFi Cas9, dual gRNA systems).
Plant-derived alkaloids are an important class of natural products with various pharmacological properties1,2,3,4, including Rotundine (L-tetrahydropalmatine), berberine, morphine, colchicine, galanthamine and hyoscyamine (Fig. 1a). Many of them have been used as traditional medicines in China, Native America, India and the Islamic region. For instance, Rotundine was first isolated from Corydalis5, a plant that has been used as traditional Chinese herbal medicine for over a thousand years, known for its analgesic, anti-inflammatory, neuroprotective, anti-addictive, and antitumor activities6,7,8. Today, it also serves as an alternative to anxiolytic and sedative drugs from the addictive benzodiazepine group, as well as analgesics9. However, similar to many plant-derived natural products10,11, the commercial use of plant-derived alkaloids still mainly relies on extraction from medicinal plants with low abundance12,13,14,15, which is further affected by climate change, cultivation methods and location. Moreover, due to the lack of appropriate functional groups, derivatization of naturally occurring alkaloids to increase structural complexity and diversity through chemical methods remains challenging, restricting further drug development. Although chemical synthesis methods have been developed to overcome these issues, they often involve harsh conditions and heavy-metal catalysts16,17. In addition, the structural complexity of alkaloids, with their chiral centers and regioselective modifications, often results in low yields.
With the elucidation of the biosynthetic pathways of alkaloids and advancements in synthetic biology18,19,20,21,22,23,24,25,26,27, many efforts have been made to biosynthesize natural and unnatural alkaloids in microorganisms, including Saccharomyces cerevisiae and Escherichia coli28,29,30,31,32,33,34,35 (Fig. 1b). However, challenges such as the complexity of their biosynthetic pathways, the difficulties in expressing plant-derived P450 enzyme36,37,38 and berberine bridge enzyme (BBE)29,34,39,40, and the cytotoxicity from the accumulation of alkaloids or its intermediates34,41 always results in low production titers28,29,34, such as 16.9 mg L-1 production in berberine and 68.6 mg L-1 production in Rotundine in engineered yeasts, which still lack commercial viability. In fact, this remains a common manufacturing challenge for the heterologous biosynthesis of many plant-derived alkaloids in microorganisms.
Recently, it was reported that a designed nine-enzyme catalytic cascade enabled the efficient biosynthesis of the HIV drug islatravir42, and therapeutic oligonucleotides could be produced through an enzyme cascade in a single operation43. These seminal examples suggest that the designed enzyme cascades will revolutionize drug synthesis and development. Furthermore, specific enzymes can control the stereo-and chemoselectivity of chiral compounds44,45. Importantly, the use of modular “plug-and-play” strategy allows the easy incorporation or removal of enzymes to tailor the cascade for synthesizing different target compounds46,47, thereby introducing structural complexity and diversity. As for plant-derived natural products, steps catalyzed by enzymes that are difficult to express in engineered cells or that are still not identified can be bypassed through the careful selection of substrates46, making the process more efficient or feasible.
Riverworld.
Imagine a world stretched along a single, endless river inside a colossal space megastructure. Explore the fascinating concept of the Topopolis, a futuristic habitat billions of miles long, where humanity might thrive in a sprawling civilization bound by physics, engineering, and imagination.
Watch my exclusive video Big Alien Theory https://nebula.tv/videos/isaacarthur–… Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa… Use the link gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $30. Visit our Website: http://www.isaacarthur.net Join Nebula: https://go.nebula.tv/isaacarthur Support us on Patreon: / isaacarthur Support us on Subscribestar: https://www.subscribestar.com/isaac-a… Facebook Group:
/ 1,583,992,725,237,264 Reddit:
/ isaacarthur Twitter:
/ isaac_a_arthur on Twitter and RT our future content. SFIA Discord Server:
/ discord Credits: Topopolis: The Eternal River Episode 487a; February 23, 2025 Written, Produced & Narrated by: Isaac Arthur Graphics: Apogii.uk, Ken York YD Visual, Steve Bowers, Udo Scroeter Select imagery/video supplied by Getty Images Music Courtesy of Epidemic Sound http://epidemicsound.com/creator.
Summary and analysis of the short story The Last Question by Isaac Asimov. You can read the story here: https://users.ece.cmu.edu/~gamvrosi/thelastq.htmlComic…
YouTube
Posted in media & arts | Leave a Comment on YouTube
Featuring:
Paola Arlotta.
Golub Family Professor of Stem Cell and Regenerative Biology, Harvard University.
Chair, harvard department of stem cell and regenerative biology.
Associate member, stanley center for psychiatric research, broad institute.
Growing organs in the Lab — Find out how scientists are making human organs in the lab from stem cells. While we can’t grow fully functional human organs yet, they can grow organoids from stem cells to study organ development and 3D bioprint tissues that can one day be used to repair organs.
👉 You may also like: The Basic Principles of a Cell, https://youtu.be/R5z0VYBnZPs.
📖 This video is also a blog post with images and a PDF Summary visit: https://www.clevalab.com/post/growingorgans.