Toggle light / dark theme

Tesla is preparing to launch an innovative robo-taxi network in Austin next month, supported by a new affordable Model Y and favorable federal regulations for self-driving vehicles ## ## Questions to inspire discussion ## Tesla’s Robo Taxi Network.

🚗 Q: When and where is Tesla launching its robo taxi network? A: Tesla’s robo taxi network is set to launch in Austin, Texas in June, marking a significant milestone for the company’s self-driving technology.

🤖 Q: How will the robo taxi network impact Tesla’s valuation? A: The successful launch could potentially double Tesla’s stock valuation to over **$1 trillion, validating its unique approach to self-driving vehicles. Cost and Production Advantages.

💰 Q: How does Tesla’s self-driving system compare to competitors in terms of cost? A: Tesla’s AI-based self-driving system is significantly cheaper, with a per-mile cost of $0.10 compared to **$0.50-$1.00 for human-driven rides offered by competitors like Whim and Uber.

🏭 Q: What production advantage does Tesla have over competitors? A: Tesla’s mass production capability of 2 million cars per year gives it a significant advantage over competitors like Whim, which operates with a limited fleet of 1,500 cars. Marketing and Revenue Generation.

📈 Q: How will the robo taxi network benefit Tesla’s marketing efforts? A: The network will serve as a unique marketing channel, allowing customers to experience self-driving rides firsthand, making it easier for Tesla to sell its cars and reach scale.

2024, for all of its challenges, has seen a remarkable amount of scientific discoveries by Israeli researchers across various disciplines.

From novel approaches to treating cancer to unraveling the intricacies of the human gut biome, these findings not only expand our understanding of the world but also pave the way for groundbreaking advancements in the future.

Let’s delve into 24 of the most fascinating discoveries made by Israeli scientists in 2024.


Take a look at these groundbreaking discoveries by Israeli researchers that are shaping our understanding of the world and its complexities.

Recent findings from the Dark Energy Spectroscopic Instrument suggest the possibility of new physics that extends beyond the current standard model of cosmology. Using the lab’s new Aurora exascale computing system, the research team conducted high-resolution simulations of the universe’s evoluti

MIT scientists have snapped the first-ever images of individual atoms interacting freely in space, making visible the elusive quantum effects that govern their behavior. Using a unique technique that briefly traps atoms in place with a lattice of light, the researchers captured never-before-seen

A Princeton team uncovered a surprising chiral quantum state in a supposedly non-chiral material, shedding light on elusive symmetry-breaking effects and opening doors to new quantum technologies. Chirality, the property of being different from one’s mirror image, has fascinated scientists in fie

Arianna Gleason is an award-winning scientist at the Department of Energy’s SLAC National Accelerator Laboratory who studies matter in its most extreme forms—from roiling magma in the center of our planet to the conditions inside the heart of distant stars. During Fusion Energy Week, Gleason discussed the current state of fusion energy research and how SLAC is helping push the field forward.

Fusion is at the heart of every star. The tremendous pressure and temperature at the center of a star fuses atoms together, creating many of the elements you see on the periodic table and generating an immense amount of energy.

Fusion is exciting, because it could provide unlimited energy to our . We’re trying to replicate here on Earth, though it’s a tremendous challenge for science and engineering.