Toggle light / dark theme

This meta-analysis using individual patient data assesses which components of collaborative care are most effective in reducing symptoms of depression in primary care.

As our bodies grow, cells proliferate to form tissues, and cells frequently have to be repaired or replaced throughout life. But the genome can also become less stable over time, or may pick up mutations that can lead to disease; these and other processes can cause cells to enter a state in which they stop dividing, known as senescence. Senescent cells become more common as we age. There also tends to be more inflammation as we age, but the link between increasing instability in the genome and inflammation is not well understood. Now scientists have reported a direct connection between DNA instability and inflammation in senescent cells. The findings have been reported in Nature Communications.

“In addition to no longer growing and proliferating, the other hallmark of senescent cells is that they have this inflammatory program causing them to secrete inflammatory molecules,” noted senior study author Peter Adams, Ph.D., director and professor of the Cancer Genome and Epigenetics Program at Sanford Burnham Prebys.

MILLIONS of people may be “cancer-resistant”, according to experts.

Scientists are being offered up to £20million to work out why some are tumour-proof.

About one in two Brits get cancer but tumours do not develop in everyone who would be expected to get one, such as heavy smokers.

University of Queensland researchers are designing nanotechnology they believe could improve how we treat the most aggressive form of breast cancer.

Professor Chengzhong (Michael) Yu and his team are developing novel nanoparticles that could dramatically increase the effectiveness of immunotherapies when treating triple-negative breast cancer (TNBC).

TNBC is aggressive, fast-growing and accounts for 30 per cent of all breast cancer deaths in Australia each year, despite making up only 10 to 15 per cent of new cases.

Professor Yu, from UQ’s Australian Institute for Bioengineering and Nanotechnology (AIBN), said a new solution was needed because TNBC cancer cells lacked the proteins targeted by some of the treatments used against other cancers.


UQ researchers are designing nanotechnology they believe could improve how we treat the most aggressive form of breast cancer.