Toggle light / dark theme

A team of researchers from Yale and the University of Connecticut (UConn) has developed a nanoparticle-based treatment that targets multiple culprits in glioblastoma, a particularly aggressive and deadly form of brain cancer.

The results are published in Science Advances (“Anti-seed PNAs targeting multiple oncomiRs for brain tumor therapy”).

A new treatment developed by Yale researchers uses bioadhesive nanoparticles that adhere to the site of the tumor and then slowly release the synthesized peptide nucleic acids that they’re carrying. In this image, the nanoparticles (red) are visible within human glioma tumor cells (green with blue nuclei). (Image: Yale Cancer Center)

Tassili n’Ajjer is a national park in the Sahara desert, located on a vast plateau in southeastern Algeria, bordering Libya, Niger, and Mali. It covers an area of roughly 80,000 sq. km. and contains one of the most important collections of prehistoric rock art in the world; it was inducted into the UNESCO World Heritage Site list in 1982. In 1986, UNESCO declared the area a Biosphere Reserve.

The plateau is composed largely of sandstone, and the natural erosion has resulted in hundreds of natural rock arches and other spectacular land formations — the ‘forests of stone’. Because of the altitude and the water-holding properties of the sandstone, the vegetation is somewhat richer than in the surrounding desert, and includes scattered woodland of the endangered endemic species of the Saharan cypress — one of the oldest trees in the world — and the Saharan myrtle. The literal English translation of Tassili n’Ajjer is ‘plateau of rivers’. Relict populations of the West African crocodile persisted in the Tassili n’Ajjer until the twentieth century. Various other fauna still reside on the plateau, including Barbary sheep, the only surviving type of the larger mammals depicted in the rock art of the area.

NEW YORK (AP) — Archaeologists in Kenya have dug up some of the oldest stone tools ever found, but who used them is a mystery.

In the past, scientists assumed that our direct ancestors were the only toolmakers. But two big fossil teeth found along with the tools at the Kenyan site belong to an extinct human cousin known as Paranthropus, according to a study published Thursday in the journal Science.

This adds to the evidence that our direct relatives in the Homo lineage may not have been the only tech-savvy creatures during the Stone Age, said study author Rick Potts, director of the Smithsonian’s Human Origins Program.

Caltech engineer Mory Gharib was poring over the digitized notebooks of Leonardo da Vinci one day, looking for sketches of flow visualization to share with his graduate students for inspiration. That’s when he noticed several small sketches of triangles, whose geometry seemed to be determined by grains of sand poured out from a jar. Further investigation revealed that Leonardo was attempting to study the nature of gravity, and the little triangles were his attempt to draw an equivalence between gravity and acceleration—well before Isaac Newton came up with his laws of motion, and centuries before Albert Einstein would demonstrate the equivalence principle with his general theory of relativity. [Edited for clarity.] Gharib was even able to re-create a modern version of the experiment.

Gharib and his collaborators described their discovery in a new paper published in the journal Leonardo, noting that, by modern calculations, Leonardo’s model produced a value for the gravitational constant (G) to around 97 percent accuracy. What makes this finding even more astonishing is that Leonardo did all this without a means of accurate timekeeping and without the benefit of calculus, which Newton invented in order to develop his laws of motion and universal gravitation in the 1660s.

“We don’t know if [Leonardo] did further experiments or probed this question more deeply,” Gharib said. “But the fact that he was grappling with the problems in this way—in the early 1500s—demonstrates just how far ahead his thinking was.”

For copyright contact: stienlemane2379(at)gmail.com.

Welcome to Futureunity, where we explore the fascinating world of science, technology, and the universe! From the inner workings of the human body to the outer reaches of space, we delve into the latest and most interesting discoveries that are shaping our world. Whether you’re a science buff or just looking for some mind-blowing facts, we’ve got you covered. Join us as we uncover the mysteries of the world around us and discover new frontiers in the fields of science and technology. Get ready for a journey that’s both educational and entertaining!

Disclaimer Fair Use:
1. The videos have no negative impact on the original works.
2. The videos we make are used for educational purposes.
3. The videos are transformative in nature.
4. We use only the audio component and tiny pieces of video footage, only if it’s necessary.
Copyright Disclaimer under section 107 of the Copyright Act 1976, allowance is made for “fair use” for purposes such as criticism, comment, news reporting, teaching, scholarship, education, and research. Fair use is a use permitted by copyright statutes that might otherwise be infringing.

Disclaimer:

The CEO of Tesla has made it his mission to colonize the planet Mars in our lifetime.

Elon Musk is known for making wild promises and setting outrageous goals. It’s one of his detractors’ biggest criticisms.

But it is also one of the visionary entrepreneur’s driving forces. He thrives on setting goals that society broadly deems unattainable. He loves nothing more than having his back to the wall, the odds against him.

https://youtube.com/watch?v=9PuwqjDiGcg&feature=share

Unlock the secrets of artificial intelligence in this comprehensive video. Explore the different categories of AI, such as narrow or general AI, and discover the differences between them. Delve into specific types of AI, including natural language processing, computer vision, and machine learning. Learn about the practical applications of these technologies and discover how they’re shaping the future. This is a must-see video for anyone interested in understanding the complexities of AI and how it’s transforming our world. Don’t miss out, watch now!

Dr. Nick Melosh at the BrainMind Summit hosted at Stanford, interviewed by BrainMind member Christian Bailey.

Nick Melosh is a Professor of Materials Science and Engineering, Stanford University. Nick’s research at Stanford focuses on how to design new inorganic structures to seamlessly integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano-and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.”

Learn more about BrainMind: https://brainmind.org/
Apply to BrainMind: https://brainmind.org/application

Gabriel Kreiman is a Professor at Harvard Medical School. He is on faculty at Children’s Hospital and the Center for Brain Science at Harvard University. He is Associate Director and Thrust Leader in the Harvard/MIT Center for Brains, Minds, and Machines. He received his MSc and PhD from the California Institute of Technology and pursued postdoctoral work with Professor Poggio at MIT.

The Kreiman laboratory combines behavioral metrics, neurophysiological recordings and computational models to understand cognitive function and to build biologically inspired Artificial Intelligence systems. Kreiman’s work has focused on two main themes: understanding the transformation of pixel-like inputs into rich and complex visual percepts; and elucidating the subjectively filters incoming inputs to create lasting narratives that constitute the fabric of our personal experiences and knowledge.