Toggle light / dark theme

Check out all the on-demand sessions from the Intelligent Security Summit here.

2022 has been a dynamic year for quantum computing. With commercial breakthroughs such as the UK Ministry of Defence (MoD) investing in its first quantum computer, the launch of the world’s first quantum computer capable of advantage over the cloud and the Nobel Prize in Physics awarded for ground-breaking experiments with entangled photons, the industry is making progress.

At the same time, 2022 saw the tremendous accomplishment of the exaflop barrier broken with the Frontier supercomputer. At a cost of roughly $600 million and requiring more than 20 megawatts of power, we are approaching the limits of what classical computing approaches can do on their own. Often for practical business reasons, many companies are not able to fully exploit the increasing amount of data available to them. This hampers digital transformation across areas most reliant on high-performance computing (HPC): healthcare, defense, energy and finance.

Im still w/ Kurzweil at 2029, but:


+1. While I will also respect the request to not state them in the comments, I would bet that you could sample 10 ICML/NeurIPS/ICLR/AISTATS authors and learn about 10 well-defined, not entirely overlapping obstacles of this sort.

We don’t have any obstacle left in mind that we don’t expect to get overcome in more than 6 months after efforts are invested to take it down.

I don’t want people to skim this post and get the impression that this is a common view in ML.

Scientists at Tennessee’s Oak Ridge National Laboratory are attempting to establish a doorway to a parallel reality. The goal of the project is to depict a world that is nearly comparable to ours and where life is mirrored. The experiment’s leader, Leah Broussard, told NBC that the strategy is a little crazy, but it will completely transform the game. If the studies are successful, particles will be able to morph into images of themselves, allowing them to burrow through a solid wall. This might demonstrate that the cosmos we observe is merely half of what exists. Broussard revealed that he believes the test will yield a result of zero.

The study conducted by researchers at the University of British Columbia and the University of Victoria reveals that exposure to common levels of traffic pollution can impair brain function within hours.

The peer-reviewed study published in Environmental Health found that only two hours of exposure to diesel exhaust leads to a decrease in brain functional connectivity, which is a measure of how different areas of the brain interact and communicate with each other. This study is the first controlled experiment to provide evidence of air pollution altering brain connectivity in humans.

“For many decades, scientists thought the brain may be protected from the harmful effects of air pollution,” said senior study author Dr. Chris Carlsten, professor and head of respiratory medicine and the Canada Research Chair in occupational and environmental lung disease at UBC. “This study, which is the first of its kind in the world, provides fresh evidence supporting a connection between air pollution and cognition.”