Menu

Blog

Page 3905

Sep 1, 2022

China’s new “sky train” floats under an elevated track, using magnets and AI

Posted by in categories: robotics/AI, transportation

The 2,600-foot-long experimental rail is located in Southern China. A typical maglev train glides above its track, supported by magnetic repulsion and propelled by a linear motor. This one, however, moves underneath its track at a speed of 50 mph. It operates about 32 feet above the ground and makes no physical contact with the rail.

SEE: São Paulo subway ordered to suspend use of facial recognition

After some test runs, local authorities said the line could even increase to 4.7 miles and its top operational speed can reach 75 mph.

Sep 1, 2022

Anti-laser can make any object suck in light

Posted by in category: materials

Inserting any material into a special maze of mirrors and lenses can make it absorb light perfectly. This approach could be used to detect faint starlight or for charging faraway devices with lasers.

Ori Katz at the Hebrew University of Jerusalem in Israel and his colleagues created an almost perfect absorber of light by building an “anti-laser”.

In a laser, light bounces between mirrors until it becomes amplified enough to exit the device in a concentrated beam. In an “anti-laser”, says co-author Stefan Rotter at Vienna University of Technology in Austria, light enters the device then gets stuck in an inescapable series of bounces within it.

Sep 1, 2022

These NASA photos of lightning strikes at the Artemis 1 moon rocket launch pad are amazing

Posted by in categories: climatology, space

Bolts of lightning struck several lightning towers surrounding the Artemis 1 mega moon rocket Saturday (Aug. 27), and there are epic photos showing just how it looked.

Sep 1, 2022

Existential Hope Special with Morgan Levine

Posted by in categories: biotech/medical, genetics, life extension, mathematics, robotics/AI

Foresight Existential Hope Group.
Program & apply to join: https://foresight.org/existential-hope/

In the Existential Hope-podcast (https://www.existentialhope.com), we invite scientists to speak about long-termism. Each month, we drop a podcast episode where we interview a visionary scientist to discuss the science and technology that can accelerate humanity towards desirable outcomes.

Xhope Special with Foresight Fellow Morgan Levine.

Morgan Levine is a ladder-rank Assistant Professor in the Department of Pathology at the Yale School of Medicine and a member of both the Yale Combined Program in Computational Biology and Bioinformatics, and the Yale Center for Research on Aging. Her work relies on an interdisciplinary approach, integrating theories and methods from statistical genetics, computational biology, and mathematical demography to develop biomarkers of aging for humans and animal models using high-dimensional omics data. As PI or co-Investigator on multiple NIH-, Foundation-, and University-funded projects, she has extensive experience using systems-level and machine learning approaches to track epigenetic, transcriptomic, and proteomic changes with aging and incorporate.
this information to develop measures of risk stratification for major chronic diseases, such as cancer and Alzheimer’s disease. Her work also involves development of systems-level outcome measures of aging, aimed at facilitating evaluation for geroprotective interventions.

Continue reading “Existential Hope Special with Morgan Levine” »

Sep 1, 2022

How to Stop (And Even Reverse) Aging

Posted by in categories: biotech/medical, life extension

What does the future of aging and longevity hold? Can science hack the human lifespan? Even if we can, SHOULD we…?

People aren’t dying as early or as easily as they used to. Innovations in modern medicine, health, and hygiene helped us extend our lives by decades, but what comes next? Would you rather live to be a healthy and hearty 90 or live to be 150 but wither away for the last 60 years? We’ll talk about it in this episode of Far Out.

Continue reading “How to Stop (And Even Reverse) Aging” »

Sep 1, 2022

AI is heading towards a Terminator future, claims Ethicist

Posted by in categories: futurism, robotics/AI

An actual ethicist thinks that we might get a Terminator future soon if we keep making AI too advanced.

Sep 1, 2022

Decentralized investor communities gain traction in biotech

Posted by in categories: biotech/medical, cryptocurrencies

Despite its checkered reputation, cryptocurrency is being considered by a handful of academics as a means to funnel funds into translational research. Is the trend likely to spread? Laura DeFrancesco and Ariel Klevecz investigate.

Sep 1, 2022

Creating a 3D task that Humans and AI can perform!

Posted by in category: robotics/AI

Interested in using Experimenter for your research? Contact us at [email protected]

Sep 1, 2022

Where the buffalo roam, endangered prairies thrive

Posted by in categories: climatology, sustainability

A study 29 years in the making shows how bison reintroductions can create richer ecosystems and resilience against climate change in North America.

Sep 1, 2022

Using magnetic and electric fields to emulate black hole and stellar accretion disks

Posted by in categories: computing, cosmology, mathematics, physics

A team of researchers at the Sorbonne University of Paris reports a new way to emulate black hole and stellar accretion disks. In their paper published in the journal Physical Review Letters, the group describes using magnetic and electric fields to create a rotating disk made of liquid metal to emulate the behavior of material surrounding black holes and stars, which leads to the development of accretion disks.

Prior research has shown that massive objects have a gravitational reach that pulls in gas, dust and other material. And since such massive objects tend to spin, the material they pull in tends to swirl around the object as it moves closer. When that happens, gravity exerted by materials in the swirling mass tends to coalesce, resulting in an . Astrophysicists have been studying the dynamics of accretion disks for many years but have not been able to figure out how angular momentum is transferred from the inner parts of a given accretion disk to its outer parts as material in the disk moves ever closer to the central object.

Methods used to study accretion disks have involved the development of math formulas, and real-world models using liquids that swirl like eddies. None of the approaches has proven suitable, however, which has led researchers to look for new models. In this new effort, the researchers developed a method to generate an accretion disk made of bits spinning in the air.