Toggle light / dark theme

The rebirth of commercial supersonic flight has kind of, sort of come to pass as Dawn Aerospace announces that its 16-ft (4.8-m) autonomous Mk-II Aurora rocket-powered aircraft broke the sound barrier with a speed of Mach 1.1 on November 12, 2024.

Ever since the Anglo-French Concorde retired in 2003, civil supersonic flight has been something of a lost art. In recent years, a number of startups have been working on various projects to create a new generation of supersonic transports that are quieter, greener, more efficient, and cost effective to operate.

Researchers have developed a method to precisely locate hydrogen atoms within nanofilams, a breakthrough with significant implications for superconductivity and other material properties.

Their study, employing nuclear reaction analysis and ion channeling, revealed how hydrogen and its isotopes are distributed within titanium nanofilms, offering insights into tuning the material properties for various applications including hydrogen storage and catalysis.

Impact of hydrogen on material properties.

The initial product from this collaboration will be a 20-qubit system integrated with NVIDIA’s Grace Hopper Superchip, facilitating hybrid quantum-classical computing. This integration is expected to drive advancements in various fields, including financial services and artificial intelligence.

Through this joint venture, SDT and Anyon Technologies aim to establish a unique and robust partnership in the Asian quantum computing sector, leveraging their combined expertise to lead the commercialization and supply of superconducting quantum computers in the region.

Now is the time to banish low-level radioactive energy sources from facilities that house and conduct experiments with superconducting qubits, according to a pair of recently published studies. Significantly improving quantum device coherence times is a key step toward an era of practical quantum computing.

Two complementary articles, published in the journal PRX Quantum and the Journal of Instrumentation, outline which sources of interfering ionizing radiation are most problematic for superconducting quantum computers and how to address them. The findings set the stage for quantitative study of errors caused by radiation effects in shielded underground facilities.

A research team led by physicists at the Department of Energy’s Pacific Northwest National Laboratory, in collaboration with colleagues at MIT’s Lincoln Laboratory, the National Institute of Standards and Technology, along with multiple academic partners, published their findings to assist the quantum computing community to prepare for the next generation of qubit development.

A theoretical astrophysicist from the University of Kansas may have solved a nearly two-decade-old mystery over the origins of an unusual “zebra” pattern seen in high-frequency radio pulses from the Crab Nebula.

His findings have just been published in Physical Review Letters.

The Crab Nebula features a neutron star at its center that has formed into a 12-mile-wide pulsar pinwheeling electromagnetic radiation across the cosmos.

Your favorite commercial carrier might still be dragging its feet on whether to provide passengers with high-speed internet onboard using Starlink. But SpaceX’s offering is already the favorite for makers of supersonic and hypersonic planes.

CEOs of futuristic airplane companies Hermeus and Boom have confirmed that their prototype planes are using Starlink already, a report said.

SpaceX’s Starlink uses a massive fleet of over 3,500 satellites in low Earth orbit (LEO) to offer high-speed internet services to customers in major parts of the world.

New findings from basalt samples retrieved by China’s Chang’e-6 mission reveal that volcanic activity on the Moon’s farside dates back between 4.2 and 2.8 billion years.

This research provides key insights into the lunar geological dichotomy and aids in the precision of lunar dating methods.

Lunar Farside’s Volcanic History Revealed.

Researchers use the H.E.S.S. Observatory to overcome the challenge of detecting high-energy cosmic-ray electrons and positrons, revealing their likely origins close to our solar system through advanced data analysis techniques.

The Universe is filled with extreme environments, from the coldest regions to the most energetic sources imaginable. These conditions give rise to extraordinary objects like supernova remnants, pulsars, and active galactic nuclei, which emit charged particles and gamma rays with energies far exceeding those produced by the nuclear fusion processes in stars—by several orders of magnitude.

Challenges in Cosmic Ray Detection.

Fermium studies indicate nuclear shell effects diminish as nuclear mass increases, emphasizing macroscopic influences in superheavy elements.

Where does the periodic table of chemical elements end and which processes lead to the existence of heavy elements? An international research team has conducted experiments at the GSI/FAIR accelerator facility and at Johannes Gutenberg University Mainz to investigate these questions.

Their research, published in the journal Nature, provides new insights into the structure of atomic nuclei of fermium (element 100) with different numbers of neutrons. Using forefront laser spectroscopy techniques, the team traced the evolution of the nuclear charge radius and found a steady increase as neutrons were added to the nuclei. This indicates that localized nuclear shell effects have a reduced influence on the nuclear charge radius in these heavy nuclei.

Despite being a mature technology in existence for over several decades, silicon photonic modulators face scrutiny from industry and academic experts. In a recent editorial interview, experts emphasize the need to explore alternatives beyond the traditional platforms. The discussion centers on innovative modulator materials and configurations that could cater to emerging applications in data centers, artificial intelligence, quantum information processing, and LIDAR. Experts also outline the challenges that lie ahead in this field.

Optical and photonic modulators are technologically advanced devices that enable the manipulation of light properties—such as power and phase—based on input signals. Over the decades, scientists have researched and developed silicon photonic modulators with wide-ranging applications, including optical data communication, sensing, biomedical technologies, automotive systems, astronomy, aerospace, and artificial intelligence (AI).

However, these modulators face bandwidth limitations and operational robustness issues stemming from the fundamental properties of silicon and other practical constraints, as highlighted by a panel of leading industry and academic experts in a recent editorial interview.