Menu

Blog

Page 3815

Sep 15, 2022

Robots & Artificial General Intelligence — How Robotics is Paving The Way for AGI

Posted by in categories: robotics/AI, singularity

Artificial General Intelligence or short AGI was commonly referred as Strong AI. The continues advancements in robotics are also spurring the development of AGI. Currently we only have narrow AI or weak AI. But robots are paving the way for strong AI. In the future, robots might possibly become smarter than us or at least, reach human level intelligence. The field of robotics has seen many improvements over the years, as artificial intelligence systems continue to get better. Machine intelligence is a trendy topic among computer scientists and other relevant researchers on the field. As robots continue to get better, concerns for the rise of a superintelligence or an artificial general intelligence that could have different goals from ours, is increasingly getting the attention of computer scientists and lay people alike. We have often seen works of science fiction where robots and AGI have malicious intent. However, things could go really bad fur us even if initially these intelligent machines are programmed to obey human orders and follow our values. As a machine continues to improve itself by modifying it’s own source code, it could lead to an intelligence explosion. A point of time often referred as a technological singularity. Where it becomes hard if not impossible to predict future trajectories of the AI in question. As of the year 2017, there are over 40 organizations focused on the development of AGI. As we’ve said many times before, today’s AI is narrow. However the field of robotics is accelerating the rise of AGI and we will possibly witness a truly general AI in our lifetimes.

#AGI #AI #Artificialintelligence.

Continue reading “Robots & Artificial General Intelligence — How Robotics is Paving The Way for AGI” »

Sep 15, 2022

Possible Paths to Artificial General Intelligence

Posted by in categories: economics, ethics, law, policy, robotics/AI

Yoshua Bengio (MILA), Irina Higgins (DeepMind), Nick Bostrom (FHI), Yi Zeng (Chinese Academy of Sciences), and moderator Joshua Tenenbaum (MIT) discuss possible paths to artificial general intelligence.

The Beneficial AGI 2019 Conference: https://futureoflife.org/beneficial-agi-2019/

Continue reading “Possible Paths to Artificial General Intelligence” »

Sep 15, 2022

Wow! Astronomers have an intriguing hypothesis for a decades-old extraterrestrial mystery

Posted by in category: space

The “Wow!” signal is still an enigma, 45 years after its detection, but at least one possibility so far can’t be ruled out.

Sep 15, 2022

Normally Taking a Million Years: Scientists Successfully Fuse Chromosomes in Mammals

Posted by in categories: bioengineering, biotech/medical, evolution, genetics

In nature, evolutionary chromosomal changes may take a million years, but scientists have recently reported a novel technique for programmable chromosome fusion that has successfully created mice with genetic changes that occur on a million-year evolutionary scale in the laboratory. The findings might shed light on how chromosomal rearrangements – the neat bundles of structured genes provided in equal numbers by each parent, which align and trade or mix characteristics to produce offspring – impact evolution.

In a study published in the journal Science, the researchers show that chromosome level engineering is possible in mammals. They successfully created a laboratory house mouse with a novel and sustainable karyotype, offering crucial insight into how chromosome rearrangements may influence evolution.

“The laboratory house mouse has maintained a standard 40-chromosome karyotype — or the full picture of an organism’s chromosomes — after more than 100 years of artificial breeding,” said co-first author Li Zhikun, researcher in the Chinese Academy of Sciences (CAS) Institute of Zoology and the State Key Laboratory of Stem Cell and Reproductive Biology. “Over longer time scales, however, karyotype changes caused by chromosome rearrangements are common. Rodents have 3.2 to 3.5 rearrangements per million years, whereas primates have 1.6.”

Sep 15, 2022

AIVITA Biomedical CEO Dr. Hans Keirstead to Deliver Keynote Address at United Nations ‘AI for Good’ Meeting

Posted by in categories: biotech/medical, robotics/AI

IRVINE, Calif., Sept. 13, 2022 /PRNewswire/ — AIVITA Biomedical, Inc., a biotech company specializing in innovative cell applications, today announced that chairman and CEO Hans Keirstead, Ph.D., will deliver a keynote address at AI for Good, a program dedicated to achieving the United Nations Sustainable Development Goals through practical AI applications. Details for the keynote are as follows:

Keynote title: AI in healthcare is an infant. Intelligence augmentation is an athlete. When: Wednesday, September 14, 2022, 15:00 CEST (9:00 EDT) Where: Switzerland — Virtual Presentation

The AI for Good meeting is organized by the International Telecommunication Union (ITU), the United Nations specialized agency for information and communication technologies, in partnership with 40 United Nations sister agencies.

Sep 15, 2022

The Entire Food Chain Has Started Collapsing, Scientists Warn

Posted by in categories: food, robotics/AI, sustainability

According to 130,000 years’ worth of data on what mammals have been eating, we’re in the midst of a mass biodiversity crisis. Not great!

This revelation was borne of a new study, conducted by an international team of researchers and published in the journal Science, that used machine learning to paint a detailed past — and harrowing future — of what happens to food webs when land mammals go extinct. Spoiler alert: it’s pretty grim stuff.

“While about 6 percent of land mammals have gone extinct in that time, we estimate that more than 50 percent of mammal food web links have disappeared,” Evan Fricke, ecologist and lead author of the study, said in a press release. “And the mammals most likely to decline, both in the past and now, are key for mammal food web complexity.”

Sep 15, 2022

Unlocking the power of cell-derived medicines with Dr Alex Schueller, Cellvie’s CEO

Posted by in categories: biotech/medical, evolution, life extension

The biotech platform that is leveraging one of the cornerstones of evolution – mitochondria.

Mitochondria play a crucial role in the aging process, activating factors and metabolic pathways involved in longevity. Their dysfunction impacts on both lifespan and healthspan, and whilst they have been identified as disease targets for some time, mitochondria have proven difficult to treat.

Continue reading “Unlocking the power of cell-derived medicines with Dr Alex Schueller, Cellvie’s CEO” »

Sep 15, 2022

Intriguing material property found in complex nanostructures could dissipate energy

Posted by in categories: engineering, nanotechnology

Researchers from The University of Texas at Austin and North Carolina State University have discovered, for the first time, a unique property in complex nanostructures that has thus far only been found in simple nanostructures. Additionally, they have unraveled the internal mechanics of the materials that makes this property possible.

In a new paper published this week in the Proceedings of the National Academy of Sciences, the researchers found these properties in oxide-based “nanolattices,” which are tiny, hollow materials, similar in structure to things like sea sponges.

“This has been seen before in simple nanostructures, like a nanowire, which is about 1,000 times thinner than a hair,” said Yong Zhu, a professor in the Department of Mechanical and Aerospace Engineering at NC State, and one of the lead authors on the paper. “But this is the first time we’ve seen it in a 3D .”

Sep 15, 2022

Can we live longer? Physicist makes discovery about telomeres

Posted by in categories: biotech/medical, life extension

With the aid of physics and a minuscule magnet, researchers have discovered a new structure of telomeric DNA. Telomeres are sometimes seen as the key to living longer. They protect genes from damage but get a bit shorter each time a cell divides. If they become too short, the cell dies. The new discovery will help us understand aging and disease.

Physics is not the first scientific discipline that springs to mind at the mention of DNA. But John van Noort from the Leiden Institute of Physics (LION) is one of the scientists who found the new DNA structure. A biophysicist, he uses methods from physics for biological experiments. This also caught the attention of biologists from Nanyan Technological University in Singapore. They asked him to help study the DNA structure of . They have published the results in Nature.

Sep 15, 2022

New method for comparing neural networks exposes how artificial intelligence works

Posted by in categories: mathematics, robotics/AI, transportation

A team at Los Alamos National Laboratory has developed a novel approach for comparing neural networks that looks within the “black box” of artificial intelligence to help researchers understand neural network behavior. Neural networks recognize patterns in datasets; they are used everywhere in society, in applications such as virtual assistants, facial recognition systems and self-driving cars.

“The research community doesn’t necessarily have a complete understanding of what neural networks are doing; they give us good results, but we don’t know how or why,” said Haydn Jones, a researcher in the Advanced Research in Cyber Systems group at Los Alamos. “Our new method does a better job of comparing neural networks, which is a crucial step toward better understanding the mathematics behind AI.”

Jones is the lead author of the paper “If You’ve Trained One You’ve Trained Them All: Inter-Architecture Similarity Increases With Robustness,” which was presented recently at the Conference on Uncertainty in Artificial Intelligence. In addition to studying network similarity, the paper is a crucial step toward characterizing the behavior of robust neural networks.