A research team led by Dominik Schneble, Ph.D., Professor in the Department of Physics and Astronomy, has uncovered a novel regime, or set of conditions within a system, for cooperative radiative phenomena, casting new light on a 70-year-old problem in quantum optics.
Their findings on previously unseen collective spontaneous emission effects, in an array of synthetic (artificial) atoms, are published in Nature Physics, accompanied by a theoretical paper in Physical Review Research.
Spontaneous emission is a phenomenon in which an excited atom falls to a lower-energy state and spontaneously emits a quantum of electromagnetic radiation in the form of a single photon. When a single excited atom decays and emits a photon, the probability of finding the atom in its excited state falls exponentially to zero as time progresses.