Toggle light / dark theme

Robots in their current form contribute far more to our modern day life than you may realise. They may not be the sci-fi androids many imagine, but they’re hard at work doing tasks like building cars, or learning how to control nuclear fusion (opens in new tab). Only in recent years are we starting to see robots like you might have imagined as a kid, with Boston Dynamics’ creations doing all sorts of crazy stunts (opens in new tab) like dancing (opens in new tab) or guarding Pompeii (opens in new tab).

Robotics isn’t all about metal machines it turns out, and biohybrid robots may be part of our cyberpunk future too. It’s only been a few days since I was introduced to OSCAR, an artist’s rendition of a disgustingly meaty, pulsating flesh robot (opens in new tab). As wonderful and vivid as those videos are, it’s a good time to take a palette cleanser with a look at a real-world biohybrid robot.

A quantum computer in the next decade could crack the encryption our society relies on using Shor’s Algorithm. Head to https://brilliant.org/veritasium to start your free 30-day trial, and the first 200 people get 20% off an annual premium subscription.

▀▀▀
A huge thank you to those who helped us understand this complex field and ensure we told this story accurately — Dr. Lorenz Panny, Prof. Serge Fehr, Dr. Dustin Moody, Prof. Benne de Weger, Prof. Tanja Lange, PhD candidate Jelle Vos, Gorjan Alagic, and Jack Hidary.

A huge thanks to those who helped us with the math behind Shor’s algorithm — Prof. David Elkouss, Javier Pagan Lacambra, Marc Serra Peralta, and Daniel Bedialauneta Rodriguez.

▀▀▀

An international team of scientists is developing an inkable nanomaterial that they say could one day become a spray-on electronic component for ultra-thin, lightweight and bendable displays and devices.

The material, , could be incorporated into many components of future technologies including mobile phones and computers, thanks to its versatility and recent advances in nanotechnology, according to the team.

RMIT University’s Associate Professor Enrico Della Gaspera and Dr. Joel van Embden led a team of global experts to review production strategies, capabilities and potential applications of zinc oxide nanocrystals in the journal Chemical Reviews.

At its annual GTC event, Nvidia announced a partnership with Tel Aviv-based Quantum Machines to create a state-of-the-art architecture for quantum-classical computing.

The collaboration intends to bring about purpose-built infrastructure for quantum computing and GPU supercomputing capable of real-time quantum error correction. Known as DGX Quantum, the first system is expected to deploy to the Israel Quantum Computing Center.