Liquid trees using nanotechnology have all the benefits of trees and take up significantly less space.
Another week, another exoskeleton on Kickstarter.
A Shanghai-based startup called Hypershell is trying its luck with an AI-powered exoskeleton that promises to take a big load off the next time you’re on a hike or run — and they say it’s even small enough to fit inside a backpack.
But the jury is still out on whether it’s anything more than a sci-fi-looking fashion accessory. To anyone thinking of backing, all the usual caveats about crowdfunding apply — it might not work at all, nevermind well, and it’s not uncommon to receive nothing at all.
My mum was due to celebrate a century of life and looking forward to getting her card from the Queen. She’d been living in an aged-care facility which had been through multiple lockdowns due to Covid. Our family started preparations for her birthday party; “hold the date” cards were sent.
On Mum’s behalf, we applied to receive the birthday card from the Queen. But early one night, after another lockdown, my dad rang. “I don’t think she’ll make it to the weekend,” he said. “Come quickly.”
As it happens, she hung on for another 18 days. The palliative nurse explained to my family that this was a time of being, rather than doing. We tried to make Mum feel loved, comfortable and with as little pain as possible as her body prepared to die.
Scientists at Oak Ridge National Laboratory attempted to observe dark matter in a brightly-lit hallway in the basement using the sensitivity of their neutrino detectors. Neutrino Alley, where the team works, is located beneath the Spallation Neutron Source, a powerful particle accelerator. Following up on years of theoretical calculation, the COHERENT team set out to observe dark matter, which is believed to make up to 85% of the mass of the Universe. The experiment allowed the team to extend the worldwide search for dark matter in a new way, and they are planning to receive a much larger and more sensitive detector to improve their chances of catching dark matter particles.
Few things carry the same aura of mystery as dark matter. The name itself radiates secrecy, suggesting something hidden in the shadows of the Universe.
A collaborative team of scientists called COHERENT, including Kate Scholberg, Arts & Sciences Distinguished Professor of Physics, Phillip Barbeau, associate professor of Physics, and postdoctoral scholar Daniel Pershey, attempted to bring dark matter out of the shadows of the Universe and into a slightly less glamorous destination: a brightly lit, narrow hallway in a basement.
Researchers at Boston University, U.S. report that the flow of cerebrospinal fluid in the brain is linked to waking brain activity. Led by Stephanie Williams, and publishing in the open access journal PLOS Biology on March 30, the study demonstrates that manipulating blood flow in the brain with visual stimulation induces complementary fluid flow. The findings could impact treatment for conditions like Alzheimer’s disease, which have been associated with declines in cerebrospinal fluid flow.
Just as our kidneys help remove toxic waste from our bodies, cerebrospinal fluid helps remove toxins from the brain, particularly while we sleep. Reduced flow of cerebrospinal fluid is known to be related to declines in brain health, such as occur in Alzheimer’s disease. Based on evidence from sleep studies, the researchers hypothesized that brain activity while awake could also affect the flow of cerebrospinal fluid. They tested this hypothesis by simultaneously recording human brain activity via fMRI and the speed of cerebrospinal fluid flow while people were shown a checkered pattern that turned on and off.
Researchers first confirmed that the checkered pattern induced brain activity; blood oxygenation recorded by fMRI increased when the pattern was visible and decreased when it was turned off. Next, they found that the flow of cerebrospinal fluid negatively mirrored the blood signal, increasing when the checkered pattern was off. Further tests showed that changing how long the pattern was visible affected blood and fluid in a predictable way, and that the blood-cerebrospinal fluid link could not be accounted for by only breathing or heart rate rhythms.
The number of people under 50 with cancer is increasing in many countries and for many different tumour types. Why this is occurring isn’t entirely clear, but it may be due to some aspects of modern life.
By Clare Wilson
My fanmade intro for Terry Matalas’s hypothetical Star Trek: Legacy series, made in the style of the Strange New Worlds intro.
Advanced materials are urgently needed for everyday life, be it in high technology, mobility, infrastructure, green energy or medicine. However, traditional ways of discovering and exploring new materials encounter limits due to the complexity of chemical compositions, structures and targeted properties. Moreover, new materials should not only enable novel applications, but also include sustainable ways of producing, using and recycling them.
Researchers from the Max-Planck-Institut für Eisenforschung (MPIE) review the status of physics-based modelling and discuss how combining these approaches with artificial intelligence can open so far untapped spaces for the design of complex materials.
They published their perspective in the journal Nature Computational Science (“Accelerating the design of compositionally complex materials via physics-informed artificial intelligence”).
In 2018, a team of scientists at the University of California, Santa Barbara proposed a method for creating Kerr-Newman black holes using lasers. However, this method has not yet been tested experimentally.
The team of scientists, led by Philip Gibbs, proposed to create Kerr-Newman black holes by colliding two high-energy laser beams. The collision would create a plasma that would be compressed and heated to extreme temperatures, creating a black hole.
Note, that micro black holes last within micro seconds, and that we wish to ascertain how to build, in a laboratory, a black hole, which may exist say at least up to 10^−1 seconds and provide a test bed as to early universe gravitational theories. First of all, it would be to determine, if the mini black hole bomb, would spontaneously occur, unless the Kerr-Newmann black hole were carefully engineered in the laboratory. Specifically, we state that this paper is modeling the creation of an actual Kerr Newman black hole via laser physics, or possibly by other means. We initiate a model of an induced Kerr-Newman black Holes, with specific angular momentum J, and then from there model was to what would happen as to an effective charge, Q, creating an E and B field, commensurate with the release of GWs. The idea is that using a frame of reference trick, plus E + i B = −function of the derivative of a complex valued scalar field, as given by Appell, in 1887, and reviewed by Whittaker and Watson, 1927 of their “A Course of Modern Analysis” tome that a first principle identification of a B field, commensurate with increase of thermal temperature, T, so as to have artificially induced GW production. This is compared in part with the Park 1955 paper of a spinning rod, producing GW, with the proviso that both the spinning rod paper, and this artificial Kerr-Newman Black hole will employ the idea of lasers in implementation of their respective GW radiation. The idea is in part partly similar to an idea the author discussed with Dr. Robert Baker, in 2016 with the difference that a B field would be generated and linked to effects linked with induced spin to the Kerr-Newman Black hole. We close with some observations about the “black holes have no hair” theorem, and our problem. Citing some recent suppositions that this “theorem” may not be completely true and how that may relate to our experimental situation. We close with observations from Haijicek, 2008 as which may be pertinent to Quantization of Gravity. Furthermore as an answer to questions raised by a referee, we will have a final statement as to how this problem is for a real black hole being induced, and answering his questions in his review, which will be included in a final appendix to this paper. The main issue which is now to avoid the black hole bomb effect which would entail an explosion of a small black hole in a laboratory. Furthermore as an answer to questions raised by a referee, we will have a final statement as to how this problem is for a real black hole being induced, and answering his questions in his review, which will be included in a final appendix to this paper. In all, the main end result is to try to avoid the so called black hole bomb effect, where a mini black hole would explode in a laboratory setting within say 10^−16 or so seconds, i.e. the idea would be to have a reasonably stable configuration within put laser energy, but a small mass, and to do it over hopefully 1015 or more times longer than the 10^−16 seconds where the mini black hole would quickly evaporate. I.e. a duration of say up to 10^−1 seconds which would provide a base line as to astrophysical modeling of a Kerr-Newman black hole.
In this episode, learn the art of prompt engineering to enhance your ChatGPT interactions. Discover tips for crafting effective prompts, interpreting results, and fine-tuning inputs. Ideal for both beginners and experienced users. Like, comment, and subscribe for more Singularity Syndicate episodes!