Toggle light / dark theme

In 1918, the American chemist Irving Langmuir published a paper examining the behavior of gas molecules sticking to a solid surface. Guided by the results of careful experiments, as well as his theory that solids offer discrete sites for the gas molecules to fill, he worked out a series of equations that describe how much gas will stick, given the pressure.

Now, about a hundred years later, an “AI scientist” developed by researchers at IBM Research, Samsung AI, and the University of Maryland, Baltimore County (UMBC) has reproduced a key part of Langmuir’s Nobel Prize-winning work. The system— (AI) functioning as a scientist—also rediscovered Kepler’s third law of planetary motion, which can calculate the time it takes one space object to orbit another given the distance separating them, and produced a good approximation of Einstein’s relativistic time-dilation law, which shows that time slows down for fast-moving objects.

A paper describing the results is published in Nature Communications on April 12.

Playlist: https://www.youtube.com/playlist?list=PLnK6MrIqGXsJfcBdppW3CKJ858zR8P4eP
Download PowerPoint: https://github.com/hywong2/Intro_to_Quantum_Computing.
Book (Free with institution subscription): https://link.springer.com/book/10.1007/978-3-030-98339-0
Book: https://www.amazon.com/Introduction-Quantum-Computing-Layper…atfound-20

Can quantum computing replace classical computing? State, Superposition, Measurement, Entanglement, Qubit Implementation, No-cloning Theorem, Error Correction, Caveats.

Nearly 200 years since its discovery, industry rarely uses the carbon–carbon bond-forming Kolbe reaction – but now US researchers have shown it can sustainably make valuable substances.

Phil Baran’s team at Scripps Research Institute in La Jolla has done away with high voltages and platinum electrodes best established in the Kolbe reaction. In doing so, the researchers have made it much more versatile. ‘The most important feature is the ability to take waste or similarly priced products convert them into extremely high value materials,’ Baran tells Chemistry World.

Researchers in Boston are on the verge of what they say is a major advancement in lung cancer screening: Artificial intelligence that can detect early signs of the disease years before doctors would find it on a CT scan.

The new AI tool, called Sybil, was developed by scientists at the Mass General Cancer Center and the Massachusetts Institute of Technology in Cambridge. In one study, it was shown to accurately predict whether a person will develop lung cancer in the next year 86% to 94% of the time.

The Centers for Disease Control and Prevention currently recommends that adults at risk for lung cancer get a low-dose CT scan to screen for the disease annually.

Scientists are still getting to grips with the ins and outs of strange materials known as time crystals; structures that buzz with movement for eternity. Now a new variety might help deepen our understanding of the perplexing state of matter.

Just as regular crystals are atoms and molecules that repeat over a volume of space, time crystals are collections of particles that tick-tock in patterns over a duration of time in ways that initially seem to defy science.

Theorized in 2012 before being observed in the lab for the first time just four years later, researchers have been busy tinkering with the structures to probe deeper foundations of particle physics and uncover potential applications.

A magnetic cage keeps the more than 100 million degree Celsius hot plasmas in nuclear fusion devices at a distance from the vessel wall so that they do not melt. Now researchers at the Max Planck Institute for Plasma Physics (IPP) have found a way to significantly reduce this distance. This could make it possible to build smaller and cheaper fusion reactors for energy production. The work was published in the journal Physical Review Letters.

In a recent study published in the journal Maturitas, researchers conducted a systematic review and meta-analysis to compare the risk of cardiovascular events in women with and without endometriosis.

Study: Endometriosis and cardiovascular disease: A systematic review and meta-analysis. Image Credit: Bangkok Click Studio / Shutterstock.

Apart from autoimmune disorders, polycystic ovary syndrome, depression, and premature menopause, there are pregnancy-associated risk factors for cardiovascular diseases, such as gestational diabetes, pregnancy-related hypertensive disorders, placental abruption, preterm delivery, and pregnancy loss. Women experience a higher mortality rate due to cardiovascular diseases, and while the treatment methods are the same for men and women, the presentation, symptoms, diagnosis, risk factors, and response to treatment differ for women.

A new electron-scattering experiment challenges our understanding of the first excited state of the helium nucleus.

A helium nucleus, also known as an particle, consists of two protons and two neutrons and is one of the most extensively studied atomic nuclei. Given the small number of constituents, the particle can be accurately described by first principles calculations. And yet, the excited states of the particle remain a bit of a mystery, as evidenced by a disagreement surrounding the excitation from the ground state 01+ to the first excited state 02+ [1]. Theoretical predictions for this transition do not match measurements, but the experimental uncertainties have been too large for implications to be drawn. Now, the A1 Collaboration at Mainz Microtron (MAMI) in Germany has remeasured this transition via inelastic electron scattering [2]. The new data significantly improves the precision compared to previous measurements and confirms the initial discrepancy.