Musk warned of “stormy weather” ahead, flagged Tesla’s key challenges, and touted its Dojo supercomputer and autonomous driving tech as revolutionary.
In a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO), researchers at Nagoya University in Japan have developed poly(styrenesulfonic acid)-based PEMs with a high density of sulfonic acid groups.
One of the key components of environmentally friendly polymer electrolyte fuel cells is a polymer electrolyte membrane (PEM). It generates electrical energy through a reaction between hydrogen and oxygen gases. Examples of practical fuel cells include fuel cell vehicles (FCVs) and fuel cell combined heat and power (CHP) systems.
The best-known PEM is a membrane based on a perfluorosulfonic acid polymer, such as Nafion, which was developed by DuPont in the 1960s. It has a good proton conductivity of 0.1 S/cm at 70–90 °C under humidified conditions. Under these conditions, protons can be released from sulfonic acid groups.
Clearlink CEO James Clarke has drawn attention for praising an employee who gave up a family dog to return to the office, but his A.I. comments are also timely.
Hydrogen, the most abundant element in the universe, is found everywhere from the dust filling most of outer space to the cores of stars to many substances here on Earth. This would be reason enough to study hydrogen, but its individual atoms are also the simplest of any element with just one proton and one electron. For David Ceperley, a professor of physics at the University of Illinois Urbana-Champaign, this makes hydrogen the natural starting point for formulating and testing theories of matter.
Ceperley, also a member of the Illinois Quantum Information Science and Technology Center, uses computer simulations to study how hydrogen atoms interact and combine to form different phases of matter like solids, liquids, and gases. However, a true understanding of these phenomena requires quantum mechanics, and quantum mechanical simulations are costly. To simplify the task, Ceperley and his collaborators developed a machine learning technique that allows quantum mechanical simulations to be performed with an unprecedented number of atoms. They reported in Physical Review Letters that their method found a new kind of high-pressure solid hydrogen that past theory and experiments missed.
“Machine learning turned out to teach us a great deal,” Ceperley said. “We had been seeing signs of new behavior in our previous simulations, but we didn’t trust them because we could only accommodate small numbers of atoms. With our machine learning model, we could take full advantage of the most accurate methods and see what’s really going on.”
The gas giant, which orbits a bright A-type star 556 light-years away from Earth, has an equilibrium temperature of 2,250 K and a size of about 1.51 Jupiter radii. The researchers found rubidium and samarium in the planet’s atmosphere for the first time, alongside ions of titanium and barium.
The discovery of rubidium and samarium is particularly notable. With an atomic number of 62, samarium is the heaviest element ever detected in an exoplanet’s atmosphere.
Deep brain stimulation (DBS) is an experimental treatment strategy which uses an implanted device to help patients with severe depression who have reached a point where no other treatment works.
But despite her involvement in the DBS collaboration, which involves neuroscientists, neurosurgeons, electrophysiologists, engineers and computer scientists, neurologist Helen Mayberg does not see it as a long-term solution.
“I hope I live long enough to see that people won’t require a hole in their brain and a device implanted in this way,” she says. “I often have a nightmare with my tombstone that kind of reads like, what did she think she was doing?”
NASA has big plans in the works to test if we can eventually live life on mars and a Springfield doctor is getting the chance to be a part of the process.
A team of oceanographers at the Scripps Institution of Oceanography, working with a colleague from Chungnam National University and another from the University of Hawaii, has mapped 19,000 previously unknown undersea volcanoes in the world’s oceans using radar satellite data. In their paper published in the journal Earth and Space Science, the group describes how they used radar satellite data to measure seawater mounding to find and map undersea volcanoes and explains why it is important that it be done.
The ocean floor, like dry land masses, features a wide variety of terrain. And as with dry land, features that truly stand out are mountains—in the ocean they are called seamounts. And as on land, they can be created by tectonic plates pushing against one another, or by volcanos erupting. Currently, just one-fourth of the sea floor has been mapped, which means that no one knows how many seamounts exist, or where they might be. This can be a problem for submarines—twice U.S. submarines have collided with seamounts, putting such vehicles and their crew at risk. But not knowing where the seamounts are located presents another problem. It prevents oceanographers from creating models depicting the flow of oceanwater around the world.
In this new effort, the research team set themselves the task of discovering and mapping as many seamounts as possible, and to do it, they used data from radar satellites. Such satellites cannot actually see the seamounts, of course, instead they measure the altitude of the sea surface, which changes due to changes in gravitational pull related to seafloor topography; an effect known as sea mounding. In so doing, they found 19,000 previously unknown seamounts.
The traditional diagram showed brain regions linked to specific body parts, but we might also have areas connected to whole-body control.
A new study in both mice and humans has found that biological age is dynamic, and that some increases in biological age caused by stress can be reversed with recovery. The research is published in Cell Metab olism.
How can we measure age?
Our biological age is not completely linked to our chronological age. While chronological age is a measure of the amount of time you have been alive, biological age indicates how much aging has occurred to your cells over your lifetime.