Menu

Blog

Page 3616

Sep 6, 2022

New technique significantly increases lifetimes of fuel cells and other devices

Posted by in categories: energy, materials

The adoption rate of fuel cells has increased owing to the rising need for clean energy.

In a research that could jump-start the work on a range of technologies, including fuel cells, which are key to storing solar and wind energy, MIT researchers have found a simple way to significantly increase the lifetimes of fuel cells and other devices – changing the pH of the system.

Fuel/electrolysis cells made of materials known as solid metal oxides are in interest for several reasons. In electrolysis mode, they are very efficient at converting electricity from a renewable source into a storable fuel like hydrogen or methane. This storable fuel can be used in the fuel cell mode to generate electricity when the sun is not shining, or the wind isn’t blowing.

Sep 6, 2022

Lab grown chicken nuggets makes cruelty-free meat possible

Posted by in category: food

Lab grown chicken meat.


We eat 50 billion chickens every year. Is there a better way?

Sep 6, 2022

A 1,000,000,000 Particle Simulation! 🌊

Posted by in categories: open access, particle physics

❤️ Check out Weights & Biases and sign up for a free demo here: https://wandb.com/papers.

📝 The paper “A Fast Unsmoothed Aggregation Algebraic Multigrid Framework for the Large-Scale Simulation of Incompressible Flow” is available here:
http://computationalsciences.org/publications/shao-2022-multigrid.html.

Continue reading “A 1,000,000,000 Particle Simulation! 🌊” »

Sep 6, 2022

Elon Musk’s crypto interview was broadcast on the South Korean government’s YouTube channel that was hacked and renamed ‘SpaceX Invest’

Posted by in categories: cybercrime/malcode, Elon Musk, government, space travel

The channel has around 262,000 subscribers and actively posts videos on government policies and current events. It’s the third YouTube account run by South Korea’s government to have been breached in the last two weeks, Korean daily JoongAng Ilbo’s Lee Jian reported.

The identities and motives of those behind the attacks are not immediately known, the paper wrote, citing a statement from the Ministry of Culture, Sports and Tourism.

The Korea Tourism Organization’s YouTube channel was breached twice once on Thursday and once on Friday and was suspended until Sunday, JoongAng Ilbo reported.

Sep 6, 2022

FOREVER YOUNG — The Peter Pan Case | Dr Vittorio Sabastiano Interview Clips

Posted by in categories: biotech/medical, genetics, life extension

Dr Vittorio Sabastiano explains the possibilities on resetting the age of any cell type in the near future in this clip.

Dr. Vittorio Sebastiano is an Assistant Professor in the Department of Obstetrics and Gynecology at Stanford School of Medicine. His lab has established a new technology named ERA (Epigenetic Reprogramming of Aging), which repurposes the conceptual idea of reprogramming, with the goal to promote epigenetic rejuvenation of adult cells leaving their identity untouched. This new technology was patented and is being implemented by Turn Biotechnologies, of which Dr. Sebastiano is co-founder and Chair of the Scientific Advisory Board.

Continue reading “FOREVER YOUNG — The Peter Pan Case | Dr Vittorio Sabastiano Interview Clips” »

Sep 5, 2022

Fractal hard drives for quantum information

Posted by in categories: computing, education, finance, quantum physics

Circa 2016 face_with_colon_three


The Deutsche Physikalische Gesellschaft (DPG) with a tradition extending back to 1,845 is the largest physical society in the world with more than 61,000 members. The DPG sees itself as the forum and mouthpiece for physics and is a non-profit organisation that does not pursue financial interests. It supports the sharing of ideas and thoughts within the scientific community, fosters physics teaching and would also like to open a window to physics for all those with a healthy curiosity.

Sep 5, 2022

Coherent storage and manipulation of broadband photons via dynamically controlled Autler–Townes splitting

Posted by in categories: particle physics, quantum physics

Circa 2018 face_with_colon_three Quantum storage.


A broadband-light storage technique using the Autler–Townes effect is demonstrated in a system of cold Rb atoms. It overcomes both inherent and technical limitations of the established schemes for high-speed and long-lived optical quantum memories.

Sep 5, 2022

House Runs 100% on DC Power — Purdue University Project

Posted by in categories: computing, engineering, mobile phones, nanotechnology

Did you know there’s a silent war going on inside your home? Alternating current (AC) electricity comes in from the grid, but many of your appliances and lighting run on direct current (DC). Every time you plug in a TV, computer or cell phone charger, power must be individually converted from AC to DC — a costly and inefficient process. Purdue University researchers have proposed a solution to the problem by retrofitting an entire house to run on its own efficient DC-powered nano-grid.

The project to transform a 1920s-era West Lafayette home into the DC Nanogrid House began in 2017 under the direction of Eckhard Groll, the William E. and Florence E. Perry Head of Mechanical Engineering, and member of Purdue’s Center for High Performance Buildings. “We wanted to take a normal house and completely retrofit it with DC appliances and DC architecture,” Groll said. “To my knowledge, no other existing project has pursued an experimental demonstration of energy consumption improvements using DC power in a residential setting as extensively as we have.”

Sep 5, 2022

Measuring the Similarity of Photons

Posted by in categories: computing, particle physics, quantum physics

A new optical device measures photon indistinguishability—an important property for future light-based quantum computers.

Photons can be used to perform complex computations, but they must be identical or close to identical. A new device can determine the extent to which several photons emitted by a source are indistinguishable [1]. Previous methods only gave a rough estimate of the indistinguishability, but the new method offers a precise measurement. The device—which is essentially an arrangement of interconnected waveguides—could work as a diagnostic tool in a quantum optics laboratory.

In optical quantum computing, sequences of photons are made to interact with each other in complex optical circuits (see Synopsis: Quantum Computers Approach Milestone for Boson Sampling). For these computations to work, the photons must have the same frequency, the same polarization, and the same time of arrival in the device. Researchers can easily check if two photons are indistinguishable by sending them through a type of interferometer in which two waveguides—one for each photon—come close enough that one photon can hop into the neighboring waveguide. If the two photons are perfectly indistinguishable, then they always end up together in the same waveguide.

Sep 5, 2022

Tracking Quantum State Excitation in Large Molecules

Posted by in categories: particle physics, quantum physics

Laser experiments can track how the excitations of quantum states of a “buckyball” relax after the molecule collides with other particles.