Toggle light / dark theme

A new artificial intelligence system called a semantic decoder can translate a person’s brain activity—while listening to a story or silently imagining telling a story—into a continuous stream of text. The system developed by researchers at The University of Texas at Austin might help people who are mentally conscious yet unable to physically speak, such as those debilitated by strokes, to communicate intelligibly again.

The study, published in the journal Nature Neuroscience, was led by Jerry Tang, a doctoral student in computer science, and Alex Huth, an assistant professor of neuroscience and computer science at UT Austin. The work relies in part on a transformer model, similar to the ones that power Open AI’s ChatGPT and Google’s Bard.

Unlike other language decoding systems in development, this system does not require subjects to have surgical implants, making the process noninvasive. Participants also do not need to use only words from a prescribed list. Brain activity is measured using an fMRI scanner after extensive training of the decoder, in which the individual listens to hours of podcasts in the scanner. Later, provided that the participant is open to having their thoughts decoded, their listening to a new story or imagining telling a story allows the machine to generate corresponding text from alone.

It was an honor to speak at MIT’s Broad Institute about some of my past and present synthetic biology research on redesigning bacteria and viruses to act as delivery systems for biomedicine! Video recording is now available! Here is a link which should take you to 1:40:18 when my talk starts:[ ]. My talk was part of the inaugural MIT Biosummit (https://mitbiosummit.com/), a forward-looking conference which this year focused on tackling challenges at the interface of climate change and health sciences. #futureofmedicine #future #biotech #mit Thank you Ryan Robinson for helping to organize this conference and for giving your own excellent talk!


Recording of the MIT Club of Boston 2023 BioSummit: Human Health 2050 held at the Broad Institute on April 27, 2023. Note: Although the video is almost 6 hours long, you can rapidly navigate and skip to a particular speaker or session by scrubbing along the video timeline (in Chrome or Edge) or using the time markers listed below in blue (in all browsers). You can also use chapter browsing in the YouTube app on platforms where it is available.

Mitbiosummit.com.

It was Arthur C. Clarke who famously said that “Any sufficiently advanced technology is indistinguishable from magic” (although I’d argue that Jack Kirby and Jim Starlin rather perfected the idea). Now, a group of real-life scientists at the RIKEN Interdisciplinary Theoretical and Mathematical Sciences in Japan have taken it a step further: by identifying a new quantum property to measure the weirdness of spacetime, and officially calling it “magic.” From the scientific paper “Probing chaos by magic monotones,” recently published in the journal Physical Review D:

Scientists have developed a noninvasive AI system focused on translating a person’s brain activity into a stream of text, according to a peer-reviewed study published Monday in the journal Nature Neuroscience.

The system, called a semantic decoder, could ultimately benefit patients who have lost their ability to physically communicate after suffering from a stroke, paralysis or other degenerative diseases.

A team of scientists at the Instituto Italiano di Tecnologia in Italy has created the world’s first completely edible and rechargeable battery. The innovative battery could be used to power edible electronics for health diagnostics, food quality monitoring, and edible soft robotics.

Edible Rechargeable Battery

The proof-of-concept battery cell study was published in a paper in the Advanced Materials journal in March. The research team took the basic components of a traditional battery and replaced them with materials commonly consumed in our daily diets. As Mario Caironi, a scientist who coordinated the project, explained, “The battery is made only from non-toxic and edible materials. All of its materials are either derived from food or considered food or food additives.”

Bright graphics, a touchscreen, a speech synthesizer, messaging apps, games, and educational software—no, it’s not your kid’s iPad. This is the mid-1970s, and you’re using PLATO.

Far from its comparatively primitive contemporaries of teletypes and punch cards, PLATO was something else entirely. If you were fortunate enough to be near the University of Illinois Urbana-Champaign (UIUC) around a half-century ago, you just might have gotten a chance to build the future. Many of the computing innovations we treat as commonplace started with this system, and even today, some of PLATO’s capabilities have never been precisely duplicated. Today, we’ll look back on this influential technological testbed and see how you can experience it now.

From space race to Spacewar.