Toggle light / dark theme

The 2022 physics Nobel prize was awarded for experimental work demonstrating fundamental breaks in our understanding of the quantum world, leading to discussions around “local realism” and how it could be refuted. Many theorists believe these experiments challenge either “locality” (the notion that distant objects require a physical mediator to interact) or “realism” (the idea that there’s an objective state of reality). However, a growing number of experts suggest an alternative approach, “retrocausality,” which posits that present actions can affect past events, thus preserving both locality and realism.

The 2022 Nobel Prize in physics highlighted the challenges quantum experiments pose to “local realism.” However, a growing body of experts propose “retrocausality” as a solution, suggesting that present actions can influence past events, thus preserving both locality and realism. This concept offers a novel approach to understanding causation and correlations in quantum mechanics, and despite some critics and confusion with “superdeterminism,” it is increasingly seen as a viable explanation for recent groundbreaking experiments, potentially safeguarding the core principles of special relativity.

In 2022, the physics Nobel prize was awarded for experimental work showing that the quantum world must break some of our fundamental intuitions about how the universe works.

Over the past year, SideWinder has been linked to a cyber attack aimed at Pakistan Navy War College (PNWC) as well as an Android malware campaign that leveraged rogue phone cleaner and VPN apps uploaded to the Google Play Store to harvest sensitive information.

The latest infection chain documented by BlackBerry mirrors findings from Chinese cybersecurity firm QiAnXin in December 2022 detailing the use of PNWC lure documents to drop a lightweight. NET-based backdoor (App.dll) that’s capable of retrieving and executing next-stage malware from a remote server.

What makes the campaign also stand out is the threat actor’s use of server-based polymorphism as a way to potentially sidestep traditional signature-based antivirus (AV) detection and distribute additional payloads by responding with two different versions of an intermediate RTF file.

Iranian nation-state groups have now joined financially motivated actors in actively exploiting a critical flaw in PaperCut print management software, Microsoft said.

The tech giant’s threat intelligence team said it observed both Mango Sandstorm (Mercury) and Mint Sandstorm (Phosphorus) weaponizing CVE-2023–27350 in their operations to achieve initial access.

“This activity shows Mint Sandstorm’s continued ability to rapidly incorporate [proof-of-concept] exploits into their operations,” Microsoft said in a series of tweets.

Physicists at Delft University of Technology have developed a new technology on a microchip by combining two Nobel Prize-winning methods for the first time. The microchip is capable of accurately measuring distances in materials, which could have applications in areas such as underwater measurement and medical imaging.

The new technology, which utilizes sound vibrations instead of light, could be useful for obtaining high-precision position measurements in materials that are opaque. This breakthrough could result in the development of new methods for monitoring the Earth’s climate and human health. The findings have been published in the journal Nature Communications.

<em>Nature Communications</em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Scientific work often involves sifting through enormous amounts of data, a task that’s overwhelmingly mundane for humans but a piece of cake for artificial intelligence. A new platform dubbed BacterAI can conduct as many as 10,000 experiments per day to teach itself – and us – more about bacteria.

The human body is home to trillions of microbes, covering almost every surface inside and out. Many of them are vital to specific bodily functions, while many others make you sick. Research continues to uncover how inextricably linked our overall health is to our microbiomes, but managing and exploring the data involved remains a daunting task.

“We know almost nothing about most of the bacteria that influence our health,” said Paul Jensen, corresponding author of the new study. “Understanding how bacteria grow is the first step toward reengineering our microbiome.”

You may not have heard of piezoelectric materials, but odds are, you have benefitted from them.

Piezoelectric materials are —like crystals, bone or proteins—that produce an electric current when they are placed under mechanical stress.

Materials that harvest energy from their surroundings (through light, heat and motion) are finding their way into solar cells, wearable and implantable electronics and even onto spacecraft. They let us keep devices charged for longer, maybe even forever, without the need to connect them to a power supply.

I either think this has to do with some unknown physics problem like lack of some sorta gravity on spacetime fabric or it could be piloted by lifeforms as a black hole spaceship. Either way this could be addressed with a laser that could evaporate it back into light for instance a matter into light laser or put it back in place with a stasis field.


Supermassive black holes (SMBHs) lurk in the center of large galaxies like ours. From their commanding position in the galaxy’s heart, they feed on gas, dust, stars, and anything else that strays too close, growing more massive as time passes. But in rare circumstances, an SMBH can be forced out of its position and hurtle through space as a rogue SMBH.

In a new paper, researchers from Canada, Australia, and the U.S. present evidence of a rogue SMBH that’s tearing through space and interacting with the circumgalactic medium (CGM.) Along the way, the giant is creating and triggering .

The paper is “A candidate runaway supermassive black hole identified by shocks and star formation in its wake.” The lead author is Pieter van Dokkum, Professor of Astronomy and Physics at Yale University. The paper is avaiable on the arXiv preprint server and hasn’t been peer-reviewed yet.