Toggle light / dark theme

Researchers have developed “smart rust,” iron oxide nanoparticles that clean water by attracting pollutants such as oil, nano-and microplastics, glyphosate, and even estrogen hormones.

Pouring flecks of rust into water typically makes it dirtier. However, a groundbreaking development by researchers has led to the creation of “smart rust,” a type of iron oxide nanoparticle that can purify water. This smart rust has the unique ability to attract various pollutants, such as oil, nano-and microplastics, and the herbicide glyphosate, depending on the particles’ coating. What makes it even more efficient is its magnetic nature, which allows easy removal from water using a magnet, taking the pollutants along with it. Recently, the team has optimized these particles to capture estrogen hormones, which can be detrimental to aquatic life.

Presentation and Significance.

We all know having a balanced diet is important to stay healthy. New research from Waseda University has started to unpick the optimum proportion of macronutrients for a diet that supports metabolic health as we age – starting with protein. The study is published in GeroScience.

Linking diet to “healthspan”

Over our lifespans, our nutrition needs change. By optimizing our diets according to what our bodies need (in relation to our age), we can maintain our metabolic health and thereby increase our “healthspan”, with healthspan referring to the length of time in our lives that we spend in good health.

In a novel attempt to reduce the risks of over sedation, physician-scientists at Beth Israel Deaconess Medical Center (BIDMC) conducted a randomized controlled trial to determine whether virtual reality immersion can minimize the need for sedatives during hand surgery without negatively impacting patient satisfaction. The team studied adults undergoing hand surgery who were randomized to receive either Virtual Reality (VR) immersion during the procedure in addition to usual MAC, or usual MAC alone. They found that VR immersion during hand surgery led to significant reductions in sedative doses as well as post-operative lengths of stay in the post anesthesia care unit (PACU). Their work is published in PLOS ONE.


BIDMC researchers conducted a randomized controlled trial that found virtual reality immersion during hand surgery reduced the need for sedatives.

Dan Breeden first posted about this, but this is intresting. I love this as I theorized the same, when there was geological activity in Kenya’s Rift, however I had no science to back up my beliefs. Thanks Dan for your post. (Reposted Information from another source)

Researchers noticed that kimberlites occur most often during times when the tectonic plates are rearranging themselves in big ways, Gernon said, such as during the breakup of the supercontinent Pangaea. Oddly, though, kimberlites often erupt in the middle of continents, not at the edges of breakups — and this interior crust is thick, tough and hard to disrupt.


Researchers have discovered a pattern where diamonds spew from deep beneath Earth’s surface in huge, explosive volcanic eruptions.

Metal oxide’s properties could enable a wide range of terahertz frequency photonics.

Visible light is a mere fraction of the electromagnetic spectrum, and the manipulation of light waves at frequencies beyond human vision has enabled such technologies as cell phones and CT scans.

Rice University researchers have a plan for leveraging a previously unused portion of the spectrum.

Researchers have developed a novel material using tiny organic crystals that convert light into a substantial mechanical force able to lift 10,000 times its own mass. Without the need for heat or electricity, the photomechanical material could one day drive wireless, remote-controlled systems that power robots and vehicles.

Photomechanical materials are designed to transform light directly into mechanical force. They result from a complex interplay between photochemistry, polymer chemistry, physics, mechanics, optics, and engineering. Photomechanical actuators, the part of a machine that helps achieve physical movements, are gaining popularity because external control can be achieved simply by manipulating light conditions.

Researchers from the University of Colorado, Boulder, have taken the next step in the development of photomechanical materials, creating a tiny organic crystal array that bends and lifts objects much heavier than itself.

Led by the Aerospace Technology Institute (ATI) and backed by the UK government, FlyZero has concluded that green liquid hydrogen is the optimum fuel for zero-carbon emission flight and could power a midsize aircraft with 280 passengers from London to San Francisco directly, or from London to Auckland with just one stop.


FlyZero, the UK study into zero-carbon emission commercial air travel, has published its vision for a new generation of aircraft powered by liquid hydrogen, today Thursday 17th March.

The report Our Vision for Zero-Carbon Emission Air Travel marks the conclusion of a 12-month study which set out to consider the feasibility of zero-carbon emission aircraft. The project concludes aviation can achieve net zero 2050 through the development of both sustainable aviation fuel (SAF) and green liquid hydrogen technologies.

To secure market share on new hydrogen-powered aircraft, UK companies must be ready to demonstrate technologies by 2025. This timescale is key for new zero-carbon emission aircraft to enter service by 2035 and to achieve the net zero 2050 target.