Toggle light / dark theme

Chimeric antigen receptor (CAR) therapies involve the use of engineered receptors capable of redirecting immune cells to recognize and destroy cancer cells expressing a specific antigen. Currently, CAR-T cells, T cells equipped with CAR, dominate the field of CAR therapy. Since 2017, over 700 clinical trials involving CAR-T therapy have been registered and the U.S. Food and Drug Administration (FDA) has approved six CAR-T therapies for the treatment of leukemia, lymphomas, and multiple myeloma (Fig. 1) [1]. However, despite its clinical significance, several factors contribute to the limitations of CAR-T therapy. First, as collecting T cells is costly and time-consuming, this may not be feasible for patients already suffering from a compromised immune system. Second, CAR-T therapies mainly focus on treating hematological malignancies, having limited effectiveness in treating solid tumors. Third, CAR-T cells struggle to penetrate the tumor microenvironment (TME), which can hinder their therapeutic function. To overcome these limitations, promising CAR designs have emerged for multi-target CAR-T alongside novel therapies that utilize other immune cell types such as CAR-Natural killer (NK) and CAR-Macrophage (M) cells.

Figure 1. Timeline of CAR-T FDA approvals in the US. B-ALL, B cell acute lymphoblastic leukemia; LBCL, large B cell lymphoma; MCL, mantle cell lymphoma; MM, multiple myeloma; R/R, relapsed/refractorySource: adapted from Maakaron, J, et al. 2022[1].

😗😁


Imagine having a building made of stacks of bricks connected by adaptable bridges. You pull a knob that modifies the bridges and the building changes functionality. Wouldn’t it be great?

A team of researchers led by Prof. Aitor Mugarza, from the Catalan Institute of Nanoscience and Nanotechnology (ICN2) and ICREA, together with Prof. Diego Peña from the Center for Research in Biological Chemistry and Molecular Materials of the University of Santiago de Campostela (CiQUS-USC), Dr. Cesar Moreno, formerly a member of ICN2’s team and currently a researcher at the University of Cantabria, and Dr. Aran Garcia-Lekue, from the Donostia International Physics Center (DIPC) and Ikerbasque Foundation, has done something analogous, but at the single-atom scale, with the aim of synthesizing new carbon-based materials with tunable properties.

As explained in a paper just published in the Journal of the American Chemical Society (JACS) and featured on the cover of the issue, this research is a significant breakthrough in the precise engineering of atomic-thin materials —called “2D materials” due to their reduced dimensionality. The proposed fabrication technique opens exciting new possibilities for , and, in particular, for application in advanced electronics and future solutions for sustainable energy.

A new study has shown for the first time how electrical creation and control of magnetic vortices in an antiferromagnet can be achieved, a discovery that will increase the data storage capacity and speed of next generation devices.

Researchers from the University of Nottingham’s School of Physics and Astronomy have used magnetic imaging techniques to map the structure of newly formed magnetic vortices and demonstrate their back-and-forth movement due to alternating electrical pulses. Their findings have been published in Nature Nanotechnology.

“This is an exciting moment for us, these magnetic vortices have been proposed as information carriers in next-generation memory devices, but evidence of their existence in antiferromagnets has so far been scarce. Now, we have not only generated them, but also moved them in a controllable way. It’s another success for our material, CuMnAs, which has been at the center of several breakthroughs in antiferromagnetic spintronics over the last few years,” says Oliver Amin.

😀 😍


Sam Altman, the CEO of OpenAI, apparently has more up his sleeve than bringing about the AI apocalypse.

As the Financial Times reports, Altman is in advanced talks to secure around $100 million for Worldcoin, another of his ventures.

Worldcoin’s promise is hazy at best, but seems to involve scanning everybody’s eye and giving them some amount of crypto. The project’s verbiage invokes OpenAI’s vision of powerful automation that will lead to an era of plenty, promising it will usher in a “path to AI-funded UBI.”

Join top executives in San Francisco on July 11–12, to hear how leaders are integrating and optimizing AI investments for success. Learn More.

Specifically, the arrival of AI-based tools such as ChatGPT and DALL-E have dazzled us with their dynamic capabilities as well as unnerved us with their staggering potential. The current debate on AI is hinged on broad philosophical questions and the public’s response. What do people make of all this?

Summary: ChatGPT has successfully passed a radiology board-style exam, demonstrating the potential of large language models in medical contexts. The study utilized 150 multiple-choice questions mimicking the style and difficulty of the Canadian Royal College and American Board of Radiology exams.

ChatGPT, based on the GPT-3.5 model, answered 69% of questions correctly, just under the passing grade of 70%. However, an updated version, GPT-4, managed to exceed the passing threshold with a score of 81%, showcasing significant improvements, particularly in higher-order thinking questions.