Menu

Blog

Page 3496

Nov 29, 2022

Toward large-scale fault-tolerant universal photonic quantum computing

Posted by in categories: computing, quantum physics

Year 2019 face_with_colon_three


Photonic quantum computing is one of the leading approaches to universal quantum computation. However, large-scale implementation of photonic quantum computing has been hindered by its intrinsic difficulties, such as probabilistic entangling gates for photonic qubits and lack of scalable ways to build photonic circuits. Here, we discuss how to overcome these limitations by taking advantage of two key ideas which have recently emerged. One is a hybrid qubit-continuous variable approach for realizing a deterministic universal gate set for photonic qubits. The other is the time-domain multiplexing technique to perform arbitrarily large-scale quantum computing without changing the configuration of photonic circuits. These ideas together will enable scalable implementation of universal photonic quantum computers in which hardware-efficient error correcting codes can be incorporated. Furthermore, all-optical implementation of such systems can increase the operational bandwidth beyond terahertz in principle, ultimately enabling large-scale fault-tolerant universal quantum computers with ultrahigh operation frequency.

Nov 29, 2022

New Measurements Provide a Glimpse of the Quantum Future

Posted by in categories: computing, internet, quantum physics

A multi-institutional team has created an efficient method for measuring high-dimensional qudits encoded in quantum frequency combs, a kind of photon source, on a single optical chip using already available experimental and computational resources.

Despite the fact that the word “qudit” may appear to be a typo, this less well-known relative of the qubit, or quantum bit, has the ability to carry more data and is more noise-resistant, two crucial characteristics required to enhance the performance of quantum networks, quantum key distribution systems, and eventually the quantum internet.

In contrast to traditional computer bits, which classify data as ones or zeros, qubits can hold values of one, zero, or both. This is due to superposition, a phenomenon that enables several quantum states to exist simultaneously. Qudit’s “d” refers to the variety of levels or values that may be encoded on a photon. Traditional qubits only have two levels, but by adding more levels, they become qudits.

Nov 29, 2022

Look! New Hubble image displays a dazzling disco ball of stars

Posted by in category: space

This glittering star cluster lives so close to the center of our galaxy that tidal forces are stripping away its outermost stars.

Nov 29, 2022

Four-million-mile battery is now a reality

Posted by in categories: chemistry, sustainability, transportation

Dahn, a world-renowned battery scientist and NSERC/Tesla Canada Chair, presented the exciting news during his keynote presentation (titled: More than a million miles and a century of life) at the international battery seminar (IBS) held 28–31 March 2022 in Orlando, Florida.

The term “Million Mile” battery first came to life after Dahn’s 2019 open access publication in Journal of The Electrochemical Society (JES) stating “we conclude that cells of this type should be able to power an electric vehicle for over 1.6 million kilometers (1 million miles) and last at least two decades in grid storage”.

Nov 29, 2022

Google and Chevron invest in nuclear fusion startup that’s raised $1.2 billion

Posted by in category: nuclear energy

Google, Chevron and a Japanese investment company have invested in TAE Technologies, a nuclear fusion startup, which has raised $1.2 billion so far.

Nov 29, 2022

AMD Radeon RX 7800 and RX 7700 graphics likely to rely on high clocks for performance

Posted by in category: computing

An update for AMD’s ROCm general-purpose GPU software has reportedly revealed the specs for Navi 32 and Navi 33, (opens in new tab) the next graphics chips likely to be released in the RDNA 3 series, otherwise known as Radeon RX-7000 series. Exactly where the new chips will slot into AMD’s new Radeon RX 7000-series (opens in new tab) is the really big question.

Are these chips the basis of the upcoming Radeon RX 7,800 and 7,700 GPUs? Hold that thought while we consider the new information that’s emerged. Buried deep within an ROCm file called “performance.hpp” are references to both Navi 32 and Navi. But the really critical numbers listed in the file are 60 and 32, and we’re talking CUs or Compute Units. To make sense of those numbers, the Navi 31 chip inside the AMD Radeon RX 7,900 XT and XTX graphics cards runs 96 CUs.

Nov 29, 2022

AMD Radeon RX 7900 XT

Posted by in category: computing

58 billion transistors 😗


AMD Navi 31, 2394 MHz, 5,376 Cores, 336 TMUs, 192 ROPs, 20,480 MB GDDR6, 2,500 MHz, 320 bit.

Nov 29, 2022

Detecting Cancer with AI — Medical Frontiers-JAPAN Live & Programs

Posted by in categories: biotech/medical, food, health, robotics/AI

Colon cancer is the second deadliest cancer in the US. Early detection is important but finding and diagnosing polyps is difficult. 2 AI-powered endoscopes have been developed in Japan to tackle the problem. One can judge a lesion’s malignancy in 0.4 second with almost 100% accuracy. The other indicates lesions during an exam, even indistinct ones, like a car navigation system. We also introduce fermented Japanese foods that are beneficial for gut health and explain how they should be eaten.

Nov 29, 2022

High-performance and compact vibration energy harvester created for self-charging wearable devices

Posted by in categories: climatology, mobile phones, physics, wearables

Walking can boost not only your own energy but also, potentially, the energy of your wearable electronic devices. Osaka Metropolitan University scientists made a significant advance toward self-charging wearable devices with their invention of a dynamic magnifier-enhanced piezoelectric vibration energy harvester that can amplify power generated from impulsive vibrations, such as from a human walking, by about 90 times, while remaining as small as currently developed energy harvesters. The results were published in Applied Physics Letters.

These days, people carry multiple such as smartphones, and wearable devices are expected to become increasingly widespread in the near future. The resulting demand for more efficient recharging of these devices has increased the attention paid to energy harvesting, a technology that converts energy such as heat and light into electricity that can small devices. One form of energy harvesting called vibration energy harvesting is deemed highly practical given that it can transform the from vibration into electricity and is not affected by weather or climate.

A research team led by Associate Professor Takeshi Yoshimura from the Graduate School of Engineering at Osaka Metropolitan University has developed a microelectromechanical system (MEMS) piezoelectric vibration energy harvester that is only approximately 2 cm in diameter with a U-shaped metal component called a dynamic magnifier. Compared with conventional harvesters, the new harvester allows for an increase of about 90 times in the power converted from impulsive vibrations, which can be generated by the human walking motion.

Nov 29, 2022

Hear “Light Echoes” From a Black Hole

Posted by in category: cosmology

Scientists have made it possible to listen to the light echoes of a black hole by turning astronomical data into souns.