Toggle light / dark theme

Year 2019 😗😁


Hepatology and drug development for liver diseases require in vitro liver models. Typical models include 2D planar primary hepatocytes, hepatocyte spheroids, hepatocyte organoids, and liver-on-a-chip. Liver-on-a-chip has emerged as the mainstream model for drug development because it recapitulates the liver microenvironment and has good assay robustness such as reproducibility. Liver-on-a-chip with human primary cells can potentially correlate clinical testing. Liver-on-a-chip can not only predict drug hepatotoxicity and drug metabolism, but also connect other artificial organs on the chip for a human-on-a-chip, which can reflect the overall effect of a drug. Engineering an effective liver-on-a-chip device requires knowledge of multiple disciplines including chemistry, fluidic mechanics, cell biology, electrics, and optics.

Year 2021


Brain organoids derived from human pluripotent stem cells can model human brain development and disease, though current culture systems fail to ensure reliable production of high-quality organoids. Here the authors combine human brain extracellular matrix and culture in a microfluidic device to promote structural and functional maturation of human brain organoids.

The Big Bang, traditionally considered the birth of the universe about 14 billion years ago, is being questioned. Physicist Bruno Bento and his team have proposed compelling research suggesting the universe may have always existed, and the Big Bang may merely be a significant event in its continuous evolution.

Bruno Bento and his colleagues set out to examine what the universe’s inception might have looked like without a Big Bang singularity. They grappled with contradictions arising when comparing accepted theories, particularly those dealing with quantum physics and general relativity. While quantum physics has accurately described three of the four fundamental forces of nature, it struggles to incorporate gravity. On the other hand, general relativity offers a comprehensive explanation of gravity, but falters when dealing with black holes’ centers and the universe’s genesis.

These contentious areas, termed “singularities,” are points in space-time where established physical laws cease to apply. Intriguingly, computations indicate an immense gravitational pull within singularities, even on a minuscule scale.