Toggle light / dark theme

The versatile robot will help create a virtual representation of the facilities.

In a first for the UK’s National Trust, Boston Dynamics’ robotic dog Spot is being used to survey two Cold War weapons testing sites located in Orford Ness, Suffolk.

This is according to a report by the *BBC* published on Thursday.

Spot, a versatile quadruped robot, has drawn a lot of interest as well as clients in recent years for its cutting-edge capabilities and its many potential uses.

## Efficiency and speed.

The machine has been designed to tackle a variety of tasks with efficiency and speed. Its lightweight and agile design allow it to navigate rough terrains, climb stairs, and function effectively both indoors and outdoors.

Spot can change its speed and posture to adjust to different environments, can execute dynamic movements and can trot, walk, and crawl.

Naked mole rats are rodents that are about the size of a mouse with a key difference, aside from having no fur — they’re extremely long-lived — reaching ages of around 40 years old. For comparison, lab mice live an average of about three and a half years. To explain their extensive lifespans, researchers have sought to pinpoint how naked mole rats evade the onset of age-related diseases like cancer. In doing so, they’ve identified a form of gelatinous substance called hyaluronan, which has anti-inflammatory and anticancer properties. Now, the question of whether the benefits of the naked mole rat’s abundant levels of this form of hyaluronan — called high molecular mass hyaluronic acid (HMM-HA) — can be exported to other species has recently drawn attention.

Published in Nature, Gorbunova and colleagues from the University of Rochester show that genetically modifying mice to harbor an enzyme that produces HMM-HA extends their lifespan. The researchers go on to show that increasing HMM-HA reduces the prevalence of cancer. Additionally, the nmrHAS2 gene improves the healthspan of mice by countering physiological dysfunction, as measured with a frailty score. These findings provide the first evidence that genes from long-lived species can be exported to other species, perhaps conferring benefits to humans one day.

“Here is how Generative AI can help in the Overall Generative AI in Software Development Life Cycle (SDLC) stages. Overall, we want to treat Generative AI as senior developer/architect with more accessibility.

- Requirements gathering: ChatGPT can significantly simplify the requirements gathering phase by building quick prototypes of complex applications. It also can minimize the risks of miscommunication in the process since the analyst and customer can align on the prototype before proceeding to the build phase.

- Design: DALL-E, another deep learning model developed by OpenAI to generate digital images from natural language descriptions, can contribute to the design of applications. In addition to providing user interface (UI) templates for common use cases, it also may eventually be deployed to ensure that the design of a given application meets regulatory criteria such as accessibility.

- Build: ChatGPT has the capability to generate code in different languages. It could be used to supplement developers by writing small components of code, thus enhancing the productivity of developers and software quality. It even can enable citizen developers to write code without the knowledge of programming language.

- Test: ChatGPT has a major role in the testing phase. It can be used to generate various test cases and to test the application just by giving prompts in natural language. It can be leveraged to fix any vulnerabilities that could be identified through processes such as Dynamic Code Analysis (DCA) and perform chaos testing to simulate worst-case scenarios to test the integrity of the application in a faster and cost-effective way.

- Maintenance: ChatGPT can significantly improve First Contact Resolution (FCR) by helping clients with basic queries. In the process, it ensures that issue resolution times are significantly reduced while also freeing up service personnel to focus their attention selectively on more complex cases.

https://medium.com/mlearning-ai/generative-ai-in-software-de…90e466eb91

A analysis for the 1995 original cyberpunk Anime release, this synopsis will also touch on themes of a post-human existence and the idea if identity. Written by Masamune Shirow and directed by Mamoru Oshii. With the 2017 Ghost In The Shell film starring Scarlett Johansson now out in Japan, visiting the GITS anime and Cramming it down for your pleasure seemed appropriate. I Hope you enjoy!

FACEBOOK: www.facebook.com/filmcram.
TWITTER: https://twitter.com/mikeymegamega.
INSTAGRAM: https://www.instagram.com/mikeymegamega/

Sony Semiconductor Solutions Corporation (SSS) has developed an energy harvesting module that uses electromagnetic wave noise energy to power IoT devices.

The new module leverages Sony’s tuner development process to generate power from electromagnetic wave noise from robots inside factories, monitors and lighting in offices, monitors and TVs in stores and homes, etc. in order to provide a stable power supply needed to run low-power IoT sensors and communications equipment.

Poor battery life is the favorite complaint when it involves smartphones and laptops. As a wireless society, having to tether ourselves right down to power up our gadgets seems more and more a nuisance. And while researchers are looking into wireless charging, if batteries were better we might worry less.

Now, a brand new technology promises just that. Researchers from the University of California, Irvine, have invented a nanowire-based battery that may be recharged many thousands of times, a big leap towards a battery that doesn’t require replacing.

Flat screen TVs that incorporate quantum dots are now commercially available, but it has been more difficult to create arrays of their elongated cousins, quantum rods, for commercial devices. Quantum rods can control both the polarization and color of light, to generate 3D images for virtual reality devices.

Using scaffolds made of folded DNA, MIT engineers have come up with a new way to precisely assemble arrays of quantum rods. By depositing quantum rods onto a DNA scaffold in a highly controlled way, the researchers can regulate their orientation, which is a key factor in determining the polarization of light emitted by the array. This makes it easier to add depth and dimensionality to a virtual scene.

“One of the challenges with quantum rods is: How do you align them all at the nanoscale so they’re all pointing in the same direction?” says Mark Bathe, an MIT professor of biological engineering and the senior author of the new study. “When they’re all pointing in the same direction on a 2D surface, then they all have the same properties of how they interact with light and control its polarization.”

“We are extremely excited to get in the air!” said Mike Atwood, Vice President of Advanced Aircraft Programs at GA-ASI. “Flight testing will validate digital designs that have been refined throughout the course of the project. General Atomics is dedicated to leveraging this process to rapidly deliver innovative unmanned capabilities for national defense.”

About GA-ASI

General Atomics Aeronautical Systems, Inc. (GA-ASI), an affiliate of General Atomics, is a leading designer and manufacturer of proven, reliable RPA systems, radars, and electro-optic and related mission systems, including the Predator® RPA series and the Lynx® Multi-mode Radar. With more than eight million flight hours, GA-ASI provides long-endurance, mission-capable aircraft with integrated sensor and data link systems required to deliver persistent situational awareness. The company also produces a variety of sensor control/image analysis software, offers pilot training and support services, and develops meta-material antennas.