Toggle light / dark theme

John Archibald Wheeler was one of the most daring thinkers in twentieth-century physics, famed for his deep insights into quantum mechanics, general relativity, and the nature of information. In his classic essay on “It from Bit,” Wheeler proposed that at the heart of reality lies a fundamentally informational thread. This means that rather than starting with “things” — material objects with an independent existence — one might instead begin with “bits,” the discrete units of information that become “real” only when observed. Within this sweeping vision, the observer plays a crucial role in bringing the universe into a definite existence, and information takes center stage in shaping the very character of physical phenomena.

In broad strokes, Wheeler’s idea of “It from Bit” emerges from the curious interplay between the quantum world and classical objects. At the core of quantum mechanics is the principle that measuring or observing something at the microscopic scale affects its state. According to the standard interpretation, a system in a so-called superposition will “collapse” into a particular outcome when measured. Wheeler’s bold claim was that this phenomenon illuminates a more general fact: that information, not matter, might be the building block of reality. Thus, any physical “it” — an electron, a planet, or even the entire cosmos — ultimately grows from answers to yes/no questions (bits), shaped by acts of measurement. Put more simply, Wheeler wanted us to see the world as not built out of little billiard-ball-like atoms existing in some absolute manner, but out of meaningful acts of observation that yield discrete bits of data.

Behind this elegant concept lies a deep philosophical backdrop. Wheeler urged us to ponder how the universe came to be what it is, and why. If we trace everything back to an early cosmos, we arrive at a place where only quantum possibilities existed — no fixed table of facts and objects. Gradually, so his argument goes, as the universe evolved and observers emerged, questions got asked, measurements were made, bits of information accumulated, and reality “crystallized.” This leap from quantum weirdness to classical solidity thus becomes a grand puzzle about information. Rather than letting classical physics occupy center stage from the beginning, Wheeler reversed the script: quantum possibilities plus acts of observation define and generate the classical world we experience. In this sense, the cosmic stage is incomplete without the audience, and reality only stabilizes by virtue of these repeated question-and-answer interactions.

A recent study evaluating garnet-type solid electrolytes for lithium metal batteries finds that their expected energy density advantages may be overstated. The research reveals that an all-solid-state lithium metal battery (ASSLMB) using lithium lanthanum zirconium oxide (LLZO) would achieve a gravimetric energy density of only 272 Wh/kg, a marginal increase over the 250–270 Wh/kg offered by current lithium-ion batteries.

Given the high production costs and manufacturing challenges associated with LLZO, the findings suggest that composite or quasi-solid-state electrolytes may be more viable alternatives. The work is published in the journal Energy Storage Materials.

“All-solid-state lithium metal batteries have been viewed as the future of energy storage, but our study shows that LLZO-based designs may not provide the expected leap in ,” said Eric Jianfeng Cheng, lead author of the study and researcher at WPI-AIMR, Tohoku University. “Even under ideal conditions, the gains are limited, and the cost and manufacturing challenges are significant.”

Existing research indicates that the accuracy of a Parkinson’s disease diagnosis hovers between 55% and 78% in the first five years of assessment. That’s partly because Parkinson’s sibling movement disorders share similarities, sometimes making a definitive diagnosis initially difficult.

Although Parkinson’s disease is a well-recognized illness, the term can refer to a variety of conditions, ranging from idiopathic Parkinson’s, the most common type, to other like multiple system atrophy, a Parkinsonian variant; and progressive supranuclear palsy. Each shares motor and nonmotor features, like changes in gait, but possesses a distinct pathology and prognosis.

Roughly one in four patients, or even one in two patients, is misdiagnosed.

New research from Northwestern University has systematically proven that a mild zap of electricity can strengthen a marine coastline for generations—greatly reducing the threat of erosion in the face of climate change and rising sea levels.

In the new study, researchers took inspiration from clams, mussels and other shell-dwelling sea life, which use dissolved minerals in seawater to build their shells.

Similarly, the researchers leveraged the same naturally occurring, dissolved minerals to form a natural cement between sea-soaked grains of sand. But, instead of using metabolic energy like mollusks do, the researchers used to spur the chemical reaction.

A new study resulting from a collaboration between King Abdullah University of Science and Technology (KAUST) and King Abdulaziz City for Science and Technology (KACST) shows how nanomaterials can significantly reduce the carbon emissions of LED (light-emitting diode) streetlights. The research team estimates that by adopting this technology, the United States alone can reduce carbon dioxide emissions by more than one million metric tons.

The findings are published in the journal Light: Science & Applications.

The nanomaterial, called nanoPE, enhances the emission of thermal radiation from the surface of the LED to reduce the LED temperature. LEDs generate heat, which raises their temperature and risks damaging the LED electronics and shortening the LED’s lifespan. In fact, approximately 75% of the input energy in LEDs is eventually lost as heat.

A study from Tübingen University and the German Center for Diabetes Research reveals that the brain plays a crucial role in obesity and type 2 diabetes development. It shows that even a brief period of consuming high-calorie processed foods can significantly alter brain insulin sensitivity, a key factor in weight gain and metabolic disorders. The research demonstrated that insulin’s appetite-suppressing effect in the brain diminishes after a short-term high-calorie diet, leading to insulin resistance. These effects were observed in healthy participants, suggesting that dietary habits could influence brain function before any significant weight gain occurs. Further research is needed to understand the brain’s role in these conditions.


The number of obese persons has grown significantly in recent decades, which presents significant difficulties for those who are impacted, healthcare systems, and those who provide treatment. The hormone insulin plays a key role in the development of obesity. Up until recently, there have been numerous signs indicating insulin causes neurodegenerative and metabolic disorders, especially in the brain. A recent study by the University Hospital of Tübingen, the German Center for Diabetes Research (DZD), and Helmholtz Munich offers intriguing new insights into the origins of type 2 diabetes and obesity as well as the brain’s function as a critical control center.

Obesity has only been officially recognized as a disease in Germany since 2020, despite the fact that it has long been known to cause a number of illnesses, including diabetes, heart attacks, and even cancer. The World Health Organization has already declared obesity to be an epidemic, affecting over one billion individuals globally and almost 16 million in Germany alone. A body mass index of 30 or more is considered obese, and a poor diet and insufficient exercise are frequently cited as the causes of this chronic illness. However, the mechanisms in the body that lead to obesity and cause the disease are more complex.

Obesity and the role of insulin in the brain

Unhealthy body fat distribution and chronic weight gain are linked to the brain’s sensitivity to insulin. What specific functions does insulin perform in the brain, and how does it affect individuals of normal weight? In their study, Prof. Dr. Stephanie Kullmann and her colleagues at the Tübingen University Hospital for Diabetology, Endocrinology, and Nephrology found the answer to this query. “Our findings demonstrate for the first time that even a brief consumption of highly processed, unhealthy foods (such as chocolate bars and potato chips) causes a significant alteration in the brain of healthy individuals, which may be the initial cause of obesity and type 2 diabetes,” says Prof. Kullmann, the study’s leader. In a healthy state, insulin has an appetite-suppressing effect in the brain. However, in people with obesity in particular, insulin no longer regulates eating behavior properly, resulting in insulin resistance.