Menu

Blog

Page 3310

Jan 16, 2023

Tens of thousands of potential catalysts in the diameter of a single hair

Posted by in category: materials

When searching for catalysts for the energy transition, materials consisting of at least five elements are considered highly promising. But there are theoretically millions of them—how do we identify the most powerful one?

A Bochum-based research team led by Professor Alfred Ludwig, head of the Materials Discovery and Interfaces Department (MDI), has succeeded in placing all possible combinations of five elements on a in a single step. In addition, the researchers developed a method to analyze the electrocatalytic potential of each of the combinations in this micromaterial library in high throughput.

This is how they hope to speed up the search for potential catalysts by a considerable degree. The team from Ruhr University Bochum published its findings in the journal Advanced Materials.

Jan 16, 2023

Examining the influence of defects on 2D integrated electronic circuits

Posted by in categories: computing, nanotechnology

For decades, transistors—the heart of computer chips—have been getting smaller and smaller. As a result, the electronic components in many devices can be made even more compact, faster and also more powerful. But is this development coming to a natural halt? The smaller the components, the greater the danger that individual defects in the atomic structure will significantly change the behavior of the component. This applies to the established silicon technology and novel nanotechnologies based on 2D materials.

At Vienna University of Technology (TU Wien), intensive work has been done on the physical description of this problem at the transistor level. Now the researchers are going a step further and looking at the influence of defects at the level of electronic circuits, which sometimes consist of several—sometimes even billions—of transistors. In some cases, individual transistors can operate outside the desired specification, but still perform well as part of a circuit consisting of several transistors. With this new approach at the circuit level, significant advances in miniaturization are still possible.

The study is published in the journal Advanced Materials.

Jan 16, 2023

Michael Greve | Longevity Investing @ Vision Weekend France 2022

Posted by in categories: biotech/medical, computing, life extension, nanotechnology

This video was recorded at the Foresight Vision Weekend 2022 at Château du Feÿ in France.

Michael Greve | Longevity Investing.

Continue reading “Michael Greve | Longevity Investing @ Vision Weekend France 2022” »

Jan 16, 2023

Laser-guided lightning Photonics

Posted by in category: climatology

An experimental campaign was conducted on the Säntis mountain in north-eastern Switzerland during the summer of 2021 with a high-repetition-rate terawatt laser. The guiding of an upward negative lightning leader over a distance of 50 m was recorded by two separate high-speed cameras.


A terawatt laser filament is shown to be able to guide lightning over a distance of 50 m in field trials on the Säntis mountain in the Swiss Alps.

Jan 16, 2023

What will the world look like in 2050? #joerogan #shorts #future #science

Posted by in categories: futurism, science

Jan 16, 2023

Scientists Have Developed a Living “Bio-Solar Cell” That Runs on Photosynthesis

Posted by in categories: biological, food, solar power, sustainability

Plants are often thought of as sources of food, oxygen, and decoration, but not as a source of electricity. However, scientists have discovered that by harnessing the natural transport of electrons within plant cells, it is possible to generate electricity as part of a green, biological solar cell. In a recent study published in ACS Applied Materials & Interfaces, researchers for the first time used a succulent plant to create a living “bio-solar cell” that runs on photosynthesis.

Photosynthesis is how plants and some microorganisms use sunlight to synthesize carbohydrates from carbon dioxide and water.

Jan 16, 2023

Blocking radio waves and electromagnetic interference with the flip of a switch

Posted by in categories: innovation, materials

Researchers in Drexel University’s College of Engineering have developed a thin film device, fabricated by spray coating, that can block electromagnetic radiation with the flip of a switch. The breakthrough, enabled by versatile two-dimensional materials called MXenes, could adjust the performance of electronic devices, strengthen wireless connections and secure mobile communications against intrusion.

The team, led by Yury Gogotsi, Ph.D., Distinguished University and Bach professor in Drexel’s College of Engineering, previously demonstrated that the two-dimensional layered MXene materials, discovered just over a decade ago, when combined with an , can be turned into a potent active shield against .

Continue reading “Blocking radio waves and electromagnetic interference with the flip of a switch” »

Jan 16, 2023

New 10-minute scan ‘can detect and cure most common cause of high blood pressure’

Posted by in category: biotech/medical

Findings solve a 60-year-old problem, researchers say A new 10-minute scan could make way for the most common cause of high blood pressure to be detected and cured, new research has suggested. Using a new type of CT scan, doctors were able to cure high blood pressure by lighting up nodules (tiny growths) in a hormone gland cure and removing them.

Jan 16, 2023

This bold new mission will try beaming solar power down from space

Posted by in categories: solar power, space, sustainability

The Space Solar Power Project (SSPP) began in 2011 when Donald Bren — philanthropist, chairman of the Irvine Company, and a lifetime member of the Caltech Board of Trustees — and Caltech’s then-president Jean-Lou Chameau came together to discuss the potential for a space-based solar power research project. By 2013, Bren and his wife (Caltech trustee Brigitte Bren) began funding the project through the Donald Bren Foundation, which will eventually exceed $100 million. As Bren said in a recent Caltech press release:

“For many years, I’ve dreamed about how space-based solar power could solve some of humanity’s most urgent challenges. Today, I’m thrilled to be supporting Caltech’s brilliant scientists as they race to make that dream a reality.”

Continue reading “This bold new mission will try beaming solar power down from space” »

Jan 16, 2023

Epigenetic “reboot” reverses aging in mice and could extend lifespan

Posted by in categories: biotech/medical, genetics, life extension

Scientists at Harvard Medical School have investigated why we age, and identified a possible way to reverse it. In tests in mice, the team showed that epigenetic “software glitches” drive the symptoms of aging – and a system reboot can reverse them, potentially extending lifespan.

Our genome contains our complete DNA blueprint, which is found in every single cell of our bodies. But it’s not the whole picture – an extra layer of information, known as the epigenome, sits above that and controls which genes are switched on and off in different types of cells. It’s as though every cell in our body is working from the same operating manual (the genome), but the epigenome is like a table of contents that directs different cells to different chapters (genes). After all, lung cells need very different instructions to heart cells.

Environmental and lifestyle factors like diet, exercise and even childhood experiences could change epigenetic expression over our lifetimes. Epigenetic changes have been linked to the rate of biological aging, but whether they drove the symptoms of aging or were a symptom themselves remained unclear.