Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Novel protein therapy shows promise as first-ever antidote for carbon monoxide poisoning

University of Maryland School of Medicine (UMSOM) researchers, along with their colleagues, engineered a new molecule that appears promising as an effective antidote for carbon monoxide poisoning with fewer side effects than other molecules currently being tested, according to a new study published in the journal PNAS.

Carbon monoxide poisoning accounts for 50,000 in the U.S. each year and causes about 1,500 deaths. These deaths may occur when released from combustion builds up in an enclosed space, which can result from ventilation failures in indoor natural gas burning equipment, or running gasoline generators or automobiles indoors or in a closed garage. Carbon monoxide poisoning is also associated with most fires from smoke inhalation.

Currently, the only treatments for carbon monoxide poisoning are oxygen-based therapies, which help the body eliminate the toxic gas. However, even with treatment, nearly half of survivors suffer long-term heart and brain damage. This has created an urgent need for faster, more effective therapies.

Routine AI assistance may lead to loss of skills in health professionals who perform colonoscopies

The introduction of artificial intelligence (AI) to assist colonoscopies is linked to a reduction in the ability of endoscopists (health professionals who perform colonoscopies) to detect precancerous growths (adenomas) in the colon without AI assistance, according to a paper published in The Lancet Gastroenterology & Hepatology.

Colonoscopy enables detection and removal of adenomas, leading to prevention of bowel cancer. Numerous trials have shown the use of AI to assist colonoscopies increases the detection of adenomas, generating much enthusiasm for the technology. However, there is a lack of research into how continuous use of AI affects endoscopist skills, with suggestions it could be either positive, by training clinicians, or negative, leading to a reduction in skills.

Author Dr. Marcin Romańczyk, Academy of Silesia (Poland), says, To our knowledge, this is the first study to suggest a negative impact of regular AI use on health care professionals’ ability to complete a patient-relevant task in medicine of any kind.

Analysis reveals H5N1 mutations linked to human adaptive potential

In recent years, there has been growing concern over the H5N1 influenza virus. It was first identified in birds three decades ago and has now gradually found its way to humans. H5N1 is a strain of the influenza virus harboring type 5 hemagglutinin (H5) and type 1 neuraminidase (N1) surface proteins, which help in viral entry and spread, respectively.

Black metal could give a heavy boost to solar power generation

In the quest for energy independence, researchers have studied solar thermoelectric generators (STEGs) as a promising source of solar electricity generation. Unlike the photovoltaics currently used in most solar panels, STEGs can harness all kinds of thermal energy in addition to sunlight. The simple devices have hot and cold sides with semiconductor materials in between, and the difference in temperature between the sides generates electricity through a physical phenomenon known as the Seebeck effect.

But current STEGs have major efficiency limitations preventing them from being more widely adopted as a practical form of energy production. Right now, most solar thermoelectric generators convert less than 1% of sunlight into electricity, compared to roughly 20% for residential solar panel systems.

That gap in efficiency has been dramatically reduced through new techniques developed by researchers at the University of Rochester’s Institute of Optics.

Structured light manipulates material properties and reveals atomic changes in nanocrystals

Researchers with the schools of science and engineering at Rensselaer Polytechnic Institute (RPI) are exploring new ways to manipulate matter with light to unlock a new generation of computer chips, photovoltaic cells and other advanced materials.

Physics professor Moussa N’Gom, Ph.D., and materials science professor Edwin Fohtung, Ph.D., have brought together their respective areas of expertise—optics and —to illuminate previously unknown properties of the materials that will build the next generation of consumer, industrial and scientific devices.

“We can use almost the entire spectrum of light, from visible to X-ray, to manipulate and study materials,” Fohtung said. “We can interrogate any system, from hard condensed matter to soft biological tissue.”

Early galaxies—or something else? Webb uncovers 300 unusually bright objects

In a new study, scientists at the University of Missouri looked deep into the universe and found something unexpected. Using infrared images taken from NASA’s powerful James Webb Space Telescope (JWST), they identified 300 objects that were brighter than they should be.

Tiny robots use sound to self-organize into intelligent groups

Animals like bats, whales and insects have long used acoustic signals for communication and navigation. Now, an international team of scientists has taken a page from nature’s playbook to model micro-sized robots that use sound waves to coordinate into large swarms that exhibit intelligent-like behavior.

The robot groups could one day carry out complex tasks like exploring disaster zones, cleaning up pollution, or performing from inside the body, according to team lead Igor Aronson, Huck Chair Professor of Biomedical Engineering, Chemistry, and Mathematics at Penn State.

“Picture swarms of bees or midges,” Aronson said. “They move, that creates sound, and the sound keeps them cohesive, many individuals acting as one.”

Massive magnets are on the move: Repurposing electromagnets for research

Plan a route, grab some snacks, and fuel up. Engineers and scientists have been sending massive magnets from U.S. Department of Energy (DOE) national labs on cross-country road trips.

Magnets are at the heart of many scientific instruments at DOE’s Brookhaven National Laboratory. They are not like typical refrigerator magnets, which apply a relatively weak and uniform force to . These electromagnets are often incredibly large and powerful, with variable fields that can be controlled by changing the electric current that runs through them.

One of their applications is to apply magnetic force to subatomic particles. For example, the Relativistic Heavy Ion Collider (RHIC) is made of superconducting electromagnets that steer and focus particle beams as they circulate through the accelerator at nearly the speed of light.

Next-level pixel-particle analogy uses quantum-inspired math to clarify noisy medical images

Medical imaging methods such as ultrasound and MRI are often affected by background noise, which can introduce blurring and obscure fine anatomical details in the images. For clinicians who depend on medical images, background noise is a fundamental problem in making accurate diagnoses.

Methods for denoising have been developed with some success, but they struggle with the complexity of noise patterns in and require manual tuning of parameters, adding complexity to the denoising process.

To solve the denoising problem, some researchers have drawn inspiration from , which describes how matter and energy behave at the atomic scale. Their studies draw an analogy between how particles vibrate and how pixel intensity spreads out in images and causes noise. Until now, none of these attempts directly applied the full-scale mathematics of quantum mechanics to image denoising.

/* */