Toggle light / dark theme

The Y chromosome is the smallest chromosome, and holds the least amount of genes, but scientists are still learning about all of its biological functions. Research has shown that many men start to lose Y chromosomes in blood cells as they get older, and this phenomenon has been linked to some disorders including heart disease and now, cancer. Some studies have suggested that the loss of the Y chromosome may help explain why men tend to die at slightly younger ages compared to women, or why there are sex differences in some types of cancer… Two new studies reported in Nature have explored the link between cancer and the loss of the Y chromosome.

One study used a mouse model to show that a specific gene on the Y chromosome known as KDM5D increases the chance that some types of colorectal cancer will metastasize. The other research report showed that when some cells lose the Y chromosome, bladder tumors are better at evading the immune system, and the risk of aggressive bladder cancer increases.

In a recent study published in the European Journal of Nutrition, scientists investigate the association between diet and cardiometabolic multimorbidity risk among British men between the ages of 60 and 79. To this end, consuming more seafood and fish was linked to a lower risk of first cardiometabolic disease transitioning to cardiometabolic multimorbidity.

Study: Prospective associations between diet quality, dietary components, and risk of cardiometabolic multimorbidity in older British men. Image Credit: fizkes / Shutterstock.com.

VLADIMIR Putin vowed to deploy his hypersonic “Satan-2” nuclear-capable missiles in a chilling new threat to the West.

The Russian leader said that the new generations of the Sarmat intercontinental ballistic missiles — thought to be the world’s most powerful — would soon be deployed for combat duty.

In a speech to newly graduated soldiers, Putin warned: “In the near future, the first launchers of the Sarmat complex with a new heavy missile will go on combat duty.”

“There is no way of knowing Cassius’ actual age as he was born in the wild and the age is just an estimate,” Toody Scott, a crocodile keeper who looks after Cassius at Marineland Crocodile Park on Green Island, told Live Science in an email. The nearly 18-foot-long (5.5 meters) saltwater giant’s birthday “was essentially made up a few years ago” and this time of year is actually “the wrong time of year for a crocodile to be born in northern Australia,” Scott added.

In 1984, researchers captured the crocodile on a cattle ranch southwest of Darwin, Australia, after the ranch owners complained they were losing livestock. Even then, when Cassius was estimated to be between 30 and 80 years old, he was the biggest crocodile ever caught alive in Australia.

“He was 16 feet, 10 inches [5.13 m] with at least another 6 inches [15 centimeters] of tail missing and a bit of a snout missing,” Grahame Webb, a crocodile researcher who participated in the capture, told ABC News. “He was a big old gnarly crocodile then. Crocs of that size are not normal.”

People who owned black-and-white television sets until the 1980s didn’t know what they were missing until they got a color TV. A similar switch could happen in the world of genomics as researchers at the Berlin Institute of Medical Systems Biology of the Max Delbrück Center (MDC-BIMSB) have developed a technique called Genome Architecture Mapping (“GAM”) to peer into the genome and see it in glorious technicolor. GAM reveals information about the genome’s spatial architecture that is invisible to scientists using solely Hi-C, a workhorse tool developed in 2009 to study DNA interactions, reports a new study in Nature Methods by the Pombo lab.

“With a black-and-white TV, you can see the shapes but everything looks gray,” says Professor Ana Pombo, a and head of the Epigenetic Regulation and Chromatin Architecture lab. “But if you have a color TV and look at flowers, you realize that they are red, yellow and white and we were unaware of it. Similarly, there’s also information in the way the genome is folded in three-dimensions that we have not been aware of.”

Understanding DNA organization can reveal the basis of health and disease. Our cells pack a 2-meter-long genome into a roughly 10 micrometer-diameter nucleus. The packaging is done precisely so that regulatory DNA comes in contact with the right genes at the right times and turns them on and off. Changes to the three-dimensional configuration can disrupt this process and cause disease.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1

DeepMind says that it has developed an AI model, called RoboCat, that can perform a range of tasks across different models of robotic arms. That alone isn’t especially novel. But DeepMind claims that the model is the first to be able to solve and adapt to multiple tasks and do so using different, real-world robots.

“We demonstrate that a single large model can solve a diverse set of tasks on multiple real robotic embodiments and can quickly adapt to new tasks and embodiments,” Alex Lee, a research scientist at DeepMind and a co-contributor on the team behind RoboCat, told TechCrunch in an email interview.

RoboCat — which was inspired by Gato, a DeepMind AI model that can analyze and act on text, images and events — was trained on images and actions data collected from robotics both in simulation and real life. The data, Lee says, came from a combination of other robot-controlling models inside of virtual environments, humans controlling robots and previous iterations of RoboCat itself.

At the turn of this century, Jeff Bezos popularized the use of mechanical turks—low-paid workers working remotely with perhaps thousands of others on tiny parts of larger computer projects—to ensure a human perspective on mostly simple tasks that proved perplexing to computers. He termed this blending of human and digital brain power “artificial artificial intelligence.”

About a quarter million people are employed through Amazon’s Mechanical Turk marketplace, just one of many sources providing such services.

This week, researchers at Swiss-based university EPFL reported that turks who had provided important human input are now relying on AI-generated content to complete their tasks. They dubbed this phenomenon “artificial artificial artificial intelligence.”