Toggle light / dark theme

Newly published research from Telethon Kids Institute and The University of Western Australia has found a gel applied during surgery to treat sarcoma tumors is both safe and highly effective at preventing the cancer from growing back.

The findings, published in the journal Cell Reports Medicine, have formed the scientific backbone of a trial underway in Perth to test the feasibility and safety of the gel on pet dogs.

The polymer-filled gel is packed with a type of and is applied inside the wound when the tumor is removed, drawing to the wound/resection site to “mop up” any remaining cancer cells.

During routine navigation in daily life, our brains use spatial mapping and memory to guide us from point A to point B. Just as routine is making a mistake in navigation that requires a course correction.

Now, researchers at Harvard Medical School have identified a specific group of neurons in a region involved in that undergo bursts of activity when running a maze veer off course and correct their error.

The findings, published July 19 in Nature, bring scientists a step closer to understanding how navigation works, while raising new questions. These questions include the specific role these neurons play during navigation, and what they are doing in other brain regions where they are found.

And the right to freedom of thought enshrined in the Universal Declaration of Human Rights is similarly open to interpretation. It was historically put in place to protect freedoms surrounding beliefs, religion, and speech. But that could change, says Ienca. “Rights are not static entities,” he says.

He is among the ethicists and legal scholars investigating the importance of “neuro rights”—the subset of human rights concerned with the protection of the human brain and mind. Some are currently exploring whether neuro rights could be recognized within established human rights, or whether we need new laws.


Her case highlights why we need to enshrine neuro rights in law.

In recent years, we’ve seen neurotechnologies move from research labs to real-world use. Schools have used some devices to monitor the brain activity of children to tell when they are paying attention. Police forces are using others to work out whether someone is guilty of a crime. And employers use them to keep workers awake and productive.

These technologies hold the remarkable promise of giving us all-new insight into our own minds. But our brain data is precious, and letting it fall into the wrong hands could be dangerous, Farahany argues in her new book, The Battle for Your Brain. I chatted with her about some of her concerns.


We need new rules to protect our cognitive liberty, says futurist and legal ethicist Nita Farahany.

Use code isaacarthur at the link below to get an exclusive 60% off an annual Incogni plan: https://incogni.com/isaacarthur.
Robots play an ever greater role in every aspect of our lives, including the battlefield, but what will their role be in the wars of the future?

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE

Listen or Download the audio of this episode from Soundcloud: Episode’s Audio-only version: https://soundcloud.com/isaac-arthur-148927746/robots-warfare.
Episode’s Narration-only version: https://soundcloud.com/isaac-arthur-148927746/robots-warfare-narration-only.

Credits:

We have implemented a nonlinear quadrature measurement of \(\hat{p}+\gamma {\hat{x}}^{2}\) using the nonlinear electro-optical feedforward and non-Gaussian ancillary states. The nonlinear feedforward makes the tailored measurement classically nonlinear, while the ancillary state pushes the measurement into highly non-classical regime and determines the excess noise of the measurement. By using a non-Gaussian ancilla we have observed 10% reduction of the added noise relative to the use of vacuum ancillary state, which is consistent with the amount of nonlinear squeezing in the ancilla. Higher reduction of the noise can be realized in the near future by a better approximation of the CPS using a superposition of higher photon number states38,42. We can now create broadband squeezed state of light beyond 1 THz8,9 and can make a broadband amplitude measurement on it with 5G technology beyond 40 GHz10, as well as a broadband photon-number measurement beyond 10 GHz11. Furthermore, the nonlinear feedforward presented here can be compatible with these technologies if an application specific integrated circuit (ASIC) is developed based on the FPGA board presented here. By using such technologies we can efficiently create non-Gaussian ancillary states with large nonlinear squeezing by heralding schemes36,43 even when the success rate is very low. It is because we can repeat heralding beyond 10 GHz and can compensate for the very low success rate.

When supplied with such high-quality ancillary state, this nonlinear measurement can be directly used in the implementation of the deterministic non-Gaussian operations required in the universal quantum computation. Our experiment is a key milestone for this development as it versatilely encompasses all the necessary elements for universal manipulation of the cluster states. Furthermore, this method is extendable to multiple ancillary states case in implementation of the higher-order quantum non-Gaussianity44 and multi-mode quantum non-Gaussianity45.

Our experiment demonstrates an active, flexible, and fast nonlinear feedforward technique applicable to traveling quantum states localized in time. If the nonlinear feedforward system is combined with the cluster states13,14 and GKP states19, all operations required for large-scale fault-tolerant universal quantum computation can be implemented in the same manner. As such, we have demonstrated a key technology needed for optical quantum computing, bringing it closer to reality.

A breakthrough study by the University of Washington.

Founded in 1,861, the University of Washington (UW, simply Washington, or informally U-Dub) is a public research university in Seattle, Washington, with additional campuses in Tacoma and Bothell. Classified as an R1 Doctoral Research University classification under the Carnegie Classification of Institutions of Higher Education, UW is a member of the Association of American Universities.