Toggle light / dark theme

This high energy output could vastly improve the world’s sustainability. With fusion, energy would be near-limitless and thus easily accessible and substantially more affordable. People could enjoy lower utility bills and consistent, reliable energy.

Watch now: How bad is a gas stove for your home’s indoor air quality?

The innovative reactor would help slow down climate change and lead to a cleaner, cooler future, while helping people save money and access clean energy. Reducing energy pollution will benefit every human, reducing the health hazards of breathing polluted air or drinking contaminated water.

Wormholes are a popular feature in science fiction, the means through which spacecraft can achieve faster-than-light (FTL) travel and instantaneously move from one point in spacetime to another. And while the General Theory of Relativity forbids the existence of “traversable wormholes,” recent research has shown that they are actually possible within the domain of quantum physics.

As federal funding cuts impact decades of research, scientists could turn to black holes for cheaper, natural alternatives to expensive facilities searching for dark matter and similarly elusive particles that hold clues to the universe’s deepest secrets, a new Johns Hopkins study of supermassive black holes suggests.

The findings, which appear in Physical Review Letters, could help complement multi-billion-dollar expenses and decades of construction needed for research complexes like Europe’s Large Hadron Collider, the largest and highest-energy particle accelerator in the world.

“One of the great hopes for particle colliders like the Large Hadron Collider is that it will generate particles, but we haven’t seen any evidence yet,” said study co-author Joseph Silk, an astrophysics professor at Johns Hopkins University and the University of Oxford, UK.

The 1980 eruption cycle made Mount St. Helens one of the most famous and now best-monitored volcanoes in the Cascades. But it is far from the only volcano in the range.

From southern British Columbia to Northern California, the Cascade Range comprises an 800-mile chain of volcanoes.

So, how did this volcanic landscape come to be?

NASA’s Perseverance Mars rover is exploring a new region of interest the team is calling “Krokodillen” that may contain some of the oldest rocks on Mars. The area has been on the Perseverance science team’s wish list because it marks an important boundary between the oldest rocks of Jezero Crater’s rim and those of the plains beyond the crater.

“The last five months have been a geologic whirlwind,” said Ken Farley, deputy project scientist for Perseverance from Caltech in Pasadena. “As successful as our exploration of ‘Witch Hazel Hill’ has been, our investigation of Krokodillen promises to be just as compelling.”

Named by Perseverance mission scientists after a mountain ridge on the island of Prins Karls Forland, Norway, Krokodillen (which means “the crocodile” in Norwegian) is a 73-acre (about 30-hectare) plateau of rocky outcrops located downslope to the west and south of Witch Hazel Hill.