Toggle light / dark theme

The quantum nature of interactions between elementary particles allows drawing non-trivial conclusions even from processes as simple as elastic scattering. The ATLAS experiment at the LHC accelerator reports the measurement of fundamental properties of strong interactions between protons at ultra-high energies.

The physics of billiard ball collisions is taught from early school years. In a good approximation, these collisions are elastic, where both momentum and energy are conserved. The scattering angle depends on how central the collision was (this is often quantified by the impact parameter value—the distance between the centers of the balls in a plane perpendicular to the motion). In the case of a small impact parameter, which corresponds to a highly central collision, the scattering angles are large. As the impact parameter increases, the scattering angle decreases.

In , we also deal with elastic collisions, when two particles collide, maintaining their identities, and scatter a certain angle to their original direction of motion. Here, we also have a relationship between the collision parameter and the scattering angle. By measuring the scattering angles, we gain information about the spatial structure of the colliding particles and the properties of their interactions.

We are pleased to announce Claude 2, our new model. Claude 2 has improved performance, longer responses, and can be accessed via API as well as a new public-facing beta website, claude.ai. We have heard from our users that Claude is easy to converse with, clearly explains its thinking, is less likely to produce harmful outputs, and has a longer memory. We have made improvements from our previous models on coding, math, and reasoning. For example, our latest model scored 76.5% on the multiple choice section of the Bar exam, up from 73.0% with Claude 1.3. When compared to college students applying to graduate school, Claude 2 scores above the 90th percentile on the GRE reading and writing exams, and similarly to the median applicant on quantitative reasoning.

Think of Claude as a friendly, enthusiastic colleague or personal assistant who can be instructed in natural language to help you with many tasks. The Claude 2 API for businesses is being offered for the same price as Claude 1.3. Additionally, anyone in the US and UK can start using our beta chat experience today.

As we work to improve both the performance and safety of our models, we have increased the length of Claude’s input and output. Users can input up to 100K tokens in each prompt, which means that Claude can work over hundreds of pages of technical documentation or even a book. Claude can now also write longer documents — from memos to letters to stories up to a few thousand tokens — all in one go.

The recent rise of powerful large language models (LLMs) has revolutionized the field of natural language processing (NLP).

The performance of these generative models is largely dependent on users’ prompts, which are becoming increasingly detailed and complex.

A Google Trends search reveals a hundredfold increase in popularity for the term “prompt engineering” over the last six months, and social media is teeming with novel prompting tips and templates.

The European Southern Observatory continues to build the largest telescope in the world, the Extremely Large Telescope (ELT). Construction of the telescope began in 2014 with flattening the top of a mountain named Cerro Armazones in Chile’s Atacama Desert.

ESO just announced that progress on construction has crossed the 50% mark. The remaining work should take another five years. When it finally comes online in 2028, the telescope will have a 39-meter (128 ft) primary mirror of 798 hexagonal segments, making it the largest telescope in the world for visible and infrared light. The new telescope should help to answer some of the outstanding questions about our Universe, such as how the first stars and galaxies formed, and perhaps even be able to take direct images of extrasolar planets.

“The ELT is the largest of the next generation of ground-based optical and near-infrared telescopes and the one that is most advanced in its construction,” said ESO Director General Xavier Barcons, in an ESO press release. “Reaching 50% completion is no small feat, given the challenges inherent to large, complex projects, and it was only possible thanks to the commitment of everyone at ESO, the continued support of the ESO Member States and the engagement of our partners in industry and instrument consortia. I am extremely proud that the ELT has reached this milestone.”

Our universe could be twice as old as current estimates, according to a new study that challenges the dominant cosmological model and sheds new light on the so-called “impossible early galaxy problem.”

“Our newly-devised model stretches the galaxy formation time by a several billion years, making the universe 26.7 billion years old, and not 13.7 as previously estimated,” says author Rajendra Gupta, adjunct professor of physics in the Faculty of Science at the University of Ottawa.

For years, astronomers and physicists have calculated the age of our universe by measuring the time elapsed since the Big Bang and by studying the oldest stars based on the redshift of light coming from distant galaxies. In 2021, thanks to new techniques and advances in technology, the age of our universe was thus estimated at 13.797 billion years using the Lambda-CDM concordance model.

Advancing the state of the art in superconducting qubit hardware requires knowledge across a range of disciplines, including materials, fabrication, circuit design and simulation, packaging, cryogenics, low-noise measurement, hardware-software interfacing, and quantum compilation. As understanding of materials and processes has advanced over time, fabricating the highest-quality qubits increasingly relies on millions of dollars of fabrication equipment and countless hours of process development and sustainment.

“It has become increasingly challenging for individual organizations to maintain this full stack of expertise, particularly as circuits become more complex to design, fabricate, and measure,” Schwartz says. “As a result, superconducting qubit hardware research has remained centralized into a relatively small number of laboratories and large universities capable of developing and sustaining this expertise.”

MIT Lincoln Laboratory is one of these laboratories, with more than 20 years of research and development in superconducting qubits and demonstrations of world-leading qubit performance. The qubits are made on-site at the Microelectronics Laboratory, considered to be one of the U.S. government’s most advanced foundries, and in specialized prototyping facilities. The collective expertise and equipment of this facility have made it possible to stand-up the SQUILL Foundry.