Toggle light / dark theme

Researchers at North Carolina State University have discovered a new distinct form of silicon called Q-silicon which, among other interesting properties, is ferromagnetic at room temperature. The findings could lead to advances in quantum computing, including the creation of a spin qubit quantum computer that is based on controlling the spin of an electron.

“The discovery of Q-silicon having robust ferromagnetism will open a new frontier in atomic-scale, spin-based devices and functional integration with nanoelectronics,” said Jay Narayan, the John C. Fan Family Distinguished Chair in Materials Science and corresponding author of a paper describing the work published in Materials Research Letters.

Ferromagnetism in materials outside of and has excited scientists worldwide for a long time. This is because spin-polarized electrons can be used to process and store information with atomic resolution. However, materials with even numbers of electrons, such as carbon and silicon, without unpaired spins were not considered seriously in terms of bulk ferromagnetism. The dangling bonds in bulk carbon and silicon materials usually reconstruct and eliminate sources of unpaired electrons.

For the first time, researchers using pulsar timing arrays have found evidence for the long-sought-after gravitational wave background. Though the exact source of this low-frequency gravitational wave hum is not yet known, further observations may reveal it to be from pairs of supermassive black holes orbiting one another or from entirely new physics at work in our universe.

A New Window onto Gravitational Waves

In 2016, researchers reported the first detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO), opening a new window onto a universe’s worth of collisions between extreme objects like black holes and neutron stars. Though this discovery marked the beginning of a new observational era, many sources of gravitational waves remained beyond the reach of our current detectors on Earth.

Topological phases of matter can enable highly stable qubits with small footprints, fast gate times, and digital control. These hardware-protected qubits must be fabricated with a material combination in which a topological phase can reliably be induced. The challenge: disorder can destroy the topological phase and obscure its detection. This paper reports on devices with low enough disorder to pass the topological gap protocol, thereby demonstrating gapped topological superconductivity and paving the way for a new stable qubit.

😗😁 Year 2020


By subscribing, you agree to our Terms of Use and Policies You may unsubscribe at any time.

We have seen people run DOOM on a pregnancy test, we have seen DOOM on a Win95 PC emulated inside Minecraft and whatnot. But this YouTuber that goes by the name Equalo thought it was too mainstream to run DOOM on conventional devices. What did he do? He went with potatoes.

In energy policy debates, nuclear energy and renewable energy technologies are sometimes viewed as competitors.

In reality, they could be better, together.

At the University of Wisconsin-Madison, Ben Lindley, an assistant professor of engineering physics and an expert on nuclear reactors, and Mike Wagner, an assistant professor of mechanical engineering and a solar energy expert, are studying the feasibility and benefits of such a coupling.

What If Cybertruck Came In Coupe-SUV form or Cyber Sub Brand From Tesla? Find All The Latest Reveal From The Cybertruck Designers.

Buckle up and prepare for a thrilling ride into the future of automotive design. In a daring move that left the world in complete awe, Tesla’s brilliant chief designer, Franz von Holzhausen, shattered the boundaries of conventional auto styling with the unveiling of the Cybertruck.

Love it or hate it, this revolutionary electric truck demands attention like no other vehicle on the road. Just google Cybertruck once and see for yourself!

A team of researchers at Switzerland’s Ecole Polytechnique Fédérale de Lausanne (EPFL) have come up with an ingenious, origami-inspired robot that can turn itself into a huge number of three-dimensional shapes.

Best of all, it can fold and unfold itself like a piece of flat-pack Ikea furniture, which its creates say makes it an ideal candidate for assisting astronauts inside the cramped environment of a spacecraft.

As seen in a video demonstration, the bot — called Mori3 — can dexterously walk and pose with four flattened limbs, or even roll around once bent into a ring shape.

A new Jell-O-like material could replace metals as electrical interfaces for pacemakers, cochlear implants, and other electronic implants.

Do an image search for “electronic implants,” and you’ll draw up a wide assortment of devices, from traditional pacemakers and cochlear implants to more futuristic brain and retinal microchips aimed at augmenting vision, treating depression, and restoring mobility.

Some implants are hard and bulky, while others are flexible and thin. But no matter their form and function, nearly all implants incorporate electrodes — small conductive elements that attach directly to target tissues to electrically stimulate muscles and nerves.

GPS is now a mainstay of daily life, helping us with navigation, tracking, mapping, and timing across a broad spectrum of applications. But it does have a few shortcomings, most notably not being able to pass through buildings, rocks, or water. That’s why Japanese researchers have developed an alternative wireless navigation system that relies on cosmic rays, or muons, instead of radio waves, according to a new paper published in the journal iScience. The team has conducted its first successful test, and the system could one day be used by search and rescue teams, for example, to guide robots underwater or to help autonomous vehicles navigate underground.

“Cosmic-ray muons fall equally across the Earth and always travel at the same speed regardless of what matter they traverse, penetrating even kilometers of rock,” said co-author Hiroyuki Tanaka of Muographix at the University of Tokyo in Japan. “Now, by using muons, we have developed a new kind of GPS, which we have called the muometric positioning system (muPS), which works underground, indoors and underwater.”