Toggle light / dark theme

“For decades Isaac Newton gave us this vision of a universe where space and time is fixed, and every clock across the universe ticks at exactly the same rate. Then Einstein shattered this vision by proposing that time is actually rubbery and relative,” says Geraint Lewis, an astrophysicist at the University of Sydney and lead author of the study. “Now we’ve shown that Einstein was, once again, correct.”

The Einsteinian concept of time running slower in the early universe arose in the late 1920s as astronomers were discovering cosmic expansion. Galaxies in the sky were found to be flying away from the Milky Way at high speed, swept along by the ceaselessly growing void—and the farther off they were, the faster they flew. This not only meant that the universe was once much smaller and denser—arising in a “big bang” from some compact, primordial point—but also that the most distant galaxies visible to us should be receding at close to the speed of light.

According to Einstein’s special and general theories of relativity, both circumstances alter the flow of time. As light from one of those far-distant galaxies travels from the heavier gravitational grip of the deep, dense early cosmos and across the continuously expanding universe, it must traverse increasingly greater expanses of space to reach Earth. Consequently, time becomes stretched in a phenomenon known as time dilation: a clock running 10 billion years ago would tick at a normal rate to an observer from that time, but from the perspective of someone today, it would appear to be ticking much slower.

Researchers have developed an advanced dielectric capacitor using nanosheet technology, providing unprecedented energy storage density and stability. This breakthrough could significantly enhance renewable energy usage and electric vehicle production.

A research group, led by Nagoya University.

Nagoya University, sometimes abbreviated as NU, is a Japanese national research university located in Chikusa-ku, Nagoya. It was the seventh Imperial University in Japan, one of the first five Designated National University and selected as a Top Type university of Top Global University Project by the Japanese government. It is one of the highest ranked higher education institutions in Japan.

Go to https://brilliant.org/IsaacArthur/ to get a 30-day free trial + the first 200 people will get 20% off their annual subscription.
After over half a century, it is time to return to the Moon, and use its vast resources as a bridge to countless new worlds.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE

Listen or Download the audio of this episode from Soundcloud: Episode’s Audio-only version: https://soundcloud.com/isaac-arthur-148927746/lunar-mining-processing-refining.
Episode’s Narration-only version: https://soundcloud.com/isaac-arthur-148927746/lunar-mining-p…ation-only.

Credits:

T cells are immune cells that fight off disease. The most common type of T cell, known as conventional T cells, maintains different functions, including activation of other T cells and killing pathogens. However, there is a less common type of T cell known as unconventional T cells. These cells regulate conventional T cells and often suppress conventional T cell function. How these cells develop and protect the body from infection and disease is unclear. Dr. Dan Pellicci and colleagues from Murdoch Children’s Research Institute and Federation University Australia reported on unconventional T cell development and their role in the immune system in a recent Science Immunology paper.

The researchers found that these unconventional T cells elicit an immune response. The discovery of an anti-pathogen role in these T cells has been unknown previously. Scientists can target these cells to prevent cancer and highly infectious diseases by understanding their role in immunity.

Dr. Pellicci and colleagues gathered samples from the Melbourne Children’s Heart Tissue Bank, where samples from children sixteen years old or younger who had heart surgery were kept. The researchers looked at the T cells from the thymus, a gland that further develops or matures T cells. After the T cells exit the thymus, they are ready to activate and target or kill infecting pathogens. Through T cell isolation, Dr. Pellicci and colleagues were able to determine the role of Unconventional T cells.