Toggle light / dark theme

Head over to our on-demand library to view sessions from VB Transform 2023. Register Here

McKinsey and Company is no stranger to generative artificial intelligence (gen AI): around half of the global consulting giant’s employees were said to be using the technology as of earlier this summer.

But it’s not the only org to see a rapid uptake of gen AI. Indeed, a new annual report by McKinsey’s AI arm QuantumBlack finds that “use of gen AI is already widespread.”

Scientists have constructed a comprehensive set of functional maps of infant brain networks, providing unprecedented details on brain development from birth to two years old.

The infant brain cortex parcellation maps, published today in eLife, have already provided novel insights into when different brain functions develop during infancy and provide valuable, publicly available references for early brain developmental studies.

Cortical parcellation is a means of studying brain function by dividing up cortical gray matter in different locations into “parcels.” Scans from imaging (fMRI) are taken when the brain is in an inactive “resting” state, alongside measurements of brain connectivity, to study brain function within each parcel.

What specific changes can we expect in the exterior and interior of the 2024 Tesla Model Y Juniper? When exactly will the Model Y refresh be released? Will there be any improvements in the battery and technology of the Model Y?

As the electric vehicle market continues to thrive, Tesla remains at the top of the EV ladder with its models staying in the top selling charts. Among its impressive lineup, the Model Y stands out as a tough rival shaping the whole EV market in its favor.

With the upcoming release of the 2024 Tesla Model Y Project Juniper and Model 3 Project Highland, as we discussed in our recent posts, Tesla is aiming to redefine the electric SUV segment even further. This highly anticipated refresh promises exciting changes to both the interior and exterior of the popular Model Y.

A paper published today in Nature Metabolism has described a method of genetically engineering cells to respond to electrical stimuli, allowing for on-demand gene expression.

Despite its futuristic outlook, this line of research is built upon previous work. The idea of an implantable gene switch to command cells in order to deliver valuable compounds into the human body is not new. The authors of this paper cite longstanding work showing that gene switches can be developed to respond to antibiotics [1] or other drugs, and the antibiotic doxycycline is used regularly for this purpose in mouse models. More recently, researchers have worked on cells that control their output based on green light [2], radio waves [3], or heat [4].

However, these mechanisms have their problems. A gene trigger that operates in response to a chemical compound requires that compound to have stable, controllable biological availability [5]. If it relies on any wavelength of electromagnetic radiation, that process may be triggered by mistake or require intense energy to function [3].

Neurons produce rhythmic patterns of electrical activity in the brain. One of the unsettled questions in the field of neuroscience is what primarily drives these rhythmic signals, called oscillations. University of Arizona researchers have found that simply remembering events can trigger them, even more so than when people are experiencing the actual event.

The researchers, whose findings are published in the journal Neuron, specifically focused on what are known as , which emerge in the ’s hippocampus region during activities like exploration, navigation and sleep. The hippocampus plays a crucial role in the brain’s ability to remember the past.

Prior to this study, it was believed that the played a more important role in driving theta oscillations, said Arne Ekstrom, professor of cognition and in the UArizona Department of Psychology and senior author of the study. But Ekstrom and his collaborators found that generated in the brain is the main driver of theta activity.

“They come off as real amateurs,” Michael Norman, a theorist at Argonne National Laboratory told Science. “They don’t know much about superconductivity and the way they’ve presented some of the data is fishy.”

Nadya Mason, a condensed matter physicist at the University of Illinois Urbana-Champaign said “the data seems a bit sloppy.”

The topic has kept Science Twitter tittering for days, with many researchers—and wannabe researchers— sharing their hot takes.

An Original Research entitled “CT Differences of Pulmonary Tuberculosis According to Presence of Pleural Effusion” by Dr Jung et al. and colleagues mentioned that tuberculous (TB) involvement of the lymphatics in the peripheral interstitium may have an association with pleural effusion development.

They explained that common CT (computed tomography) findings in TB pleural effusion are Subpleural micronodules and interlobular septal thickening. These features detected in computed tomography could aid in the differentiation between TB pleural effusion and non-tuberculous empyema.

The main question here is whether subpleural micronodules and interlobular septal thickening frequency correlate with the pleural effusion presence in pulmonary TB patients.

Optical phase retrieval and imaging appear in a wide variety of science fields, such as imaging of quasi-transparent biological samples or nanostructures metrological characterization, for example, in the semiconductor industry. At a fundamental level, the limit to imaging accuracy in classical systems comes from the intrinsic fluctuation of the illuminating light, since the photons that form it are emitted randomly by conventional sources and behave independently of one another.

Quantum correlation in light beams, in which photons show certain cooperation, can surpass those limits. Although obtained in phase estimation through first-order interference is well understood, interferometric schemes are not suitable for multi-parameter wide-field imaging, requiring raster scanning for extended samples.

In a new paper published in Light Science & Application, a team of scientists from the Quantum Optics Group of the Italian National Metrology Institute (INRiM), Italy, and from the Imaging Physics Dept. Optics Research Group, Faculty of Applied Sciences of Delft University of Technology, The Netherlands, has developed a technology exploiting quantum correlations to enhance imaging of phase profiles in a non-interferometric way.