Toggle light / dark theme

Newly achieved precise control over light emitted from incredibly tiny sources, a few nanometers in size, embedded in two-dimensional (2D) materials could lead to remarkably high-resolution monitors and advances in ultra-fast quantum computing, according to an international team led by researchers at Penn State and Université Paris-Saclay.

In a recent study, published in ACS Photonics, scientists worked together to show how the light emitted from 2D materials can be modulated by embedding a second 2D material inside them — like a tiny island of a few nanometers in size — called a nanodot. The team described how they achieved the confinement of nanodots in two dimensions and demonstrated that, by controlling the nanodot size, they could change the color and frequency of the emitted light.

“If you have the opportunity to have localized light emission from these materials that are relevant in quantum technologies and electronics, it’s very exciting,” said Nasim Alem, Penn State associate professor of materials science and engineering and co-corresponding author on the study. “Envision getting light from a zero-dimensional point in your field, like a dot in space, and not only that, but you can also control it. You can control the frequency. You can also control the wavelength where it comes from.”

Metals like silver, gold and copper can kill bacteria and viruses. An electric current can also eliminate microorganisms. A team of U of A researchers combined the two approaches and created a new type of antimicrobial surface.

“It is a ,” said physicist Yong Wang, one of the lead researchers on the project. “It’s not like 1+1=2. When we combine the two, it’s much more effective.”

In , the new technology, which uses thin nanowires of silver to carry a microampere electric current, eliminated all the E. coli bacteria on glass surfaces.

A breakthrough in safely delivering therapeutic DNA to cells could transform treatment for millions suffering from common chronic diseases like heart disease, diabetes, and cancer.

A new process that transports DNA into cells using tiny fat-based carriers called lipid nanoparticles (LNPs) developed by researchers at the Perelman School of Medicine at the University of Pennsylvania improved the process of turning on the DNA’s instructions in mice to make proteins inside cells, which is crucial in fighting disease. Signs also point to an improvement in reducing treatment risks, such as immune reactions, as compared to older DNA transfer techniques.

The team’s findings were recently published in Nature Biotechnology.

A pair of studies describing the findings also confirm the standard model of cosmology and offer compelling findings regarding the cosmological conundrum known as the Hubble Tension. The researchers also spotted light from several other sources, resulting in a virtual cosmic road map from the present to the beginning of time.

“We can see right back through cosmic history,” said Jo Dunkley, the Joseph Henry Professor of Physics and Astrophysical Sciences at Princeton University and the ACT analysis leader, in an announcement, “from our own Milky Way, out past distant galaxies hosting vast black holes, and huge galaxy clusters, all the way to that time of infancy.”

The new data from the ACT builds on several previous studies, including a time-traveling video from NASA’s James Webb Space Telescope, examining the early universe after the Big Bang when time reportedly moved five times slower than today. One study even proposed a second event called a “dark Big Bang” to explain lingering cosmic mysteries.