Menu

Blog

Page 2

Aug 16, 2022

17 Chinese govt departments issue guideline to boost population growth amid falling birth rate

Posted by in categories: education, employment, finance, government, habitats

China, which face population collapse due to low fertility rate, is starting to take steps to encourage more births.

China’s fertility rate is 1.1 children per woman. Replacement level to maintain a stable population size is 2.1 children per woman.


A total of 17 Chinese government departments on Tuesday jointly released a guideline on support policies in finance, tax, housing, employment, education and other fields to create a fertility-friendly society and encourage families to have more children, as the country faces growing pressure from falling birth rates.

Continue reading “17 Chinese govt departments issue guideline to boost population growth amid falling birth rate” »

Aug 16, 2022

The future of weight loss

Posted by in categories: biotech/medical, futurism

We have eradicated smallpox, cured many bacterial diseases, and invented a vaccine for Covid-19 within the year. But for a very long time we haven’t had a single good treatment for obesity. Has that now changed?

Aug 16, 2022

Astronomer Have Discovered A Mysterious Object, Which Is 570 Billion Times Brighter Than The Sun

Posted by in categories: physics, space

So bright that it pushes the energy limit of physics.

Billions of light years away, there is a massive ball of hot gas that is brighter than hundreds of billions of suns. It is tough to imagine something so bright. So, what is it? Astronomers are not really sure, but they have a couple of theories.

Aug 16, 2022

Algorithm learns to correct 3D printing errors for different parts, materials and systems

Posted by in categories: 3D printing, biotech/medical, information science, robotics/AI

Engineers have created intelligent 3D printers that can quickly detect and correct errors, even in previously unseen designs, or unfamiliar materials like ketchup and mayonnaise, by learning from the experiences of other machines.

The engineers, from the University of Cambridge, developed a machine learning algorithm that can detect and correct a wide variety of different errors in real time, and can be easily added to new or existing machines to enhance their capabilities. 3D printers using the algorithm could also learn how to print new materials by themselves. Details of their low-cost approach are reported in the journal Nature Communications.

3D has the potential to revolutionize the production of complex and customized parts, such as aircraft components, personalized medical implants, or even intricate sweets, and could also transform manufacturing supply chains. However, it is also vulnerable to production errors, from small-scale inaccuracies and mechanical weaknesses through to total build failures.

Aug 16, 2022

Spider Silk Proteins Developed into Gel for Biomedical Applications

Posted by in categories: biotech/medical, chemistry, life extension

Down the line, the researchers hope to develop an injectable protein solution that forms a gel inside the body. The ability to design hydrogels with specific functions opens up for a range of possible applications. Such a gel could, for example, be used to achieve a controlled release of drugs into the body. In the chemical industry, it could be fused to enzymes, a form of proteins used to speed up various chemical processes.

“In the slightly longer term, I think injectable gels can become very useful in regenerative medicine,” says the study’s first author Tina Arndt, a PhD student in Anna Rising’s research group at Karolinska Institute. “We have a long way to go, but the fact that the protein solution quickly forms a gel at body temperature and that the spider silk has been shown to be well tolerated by the body is promising.”

The ability of spiders to spin incredibly strong fibers from a silk protein solution in fractions of a second has sparked an interest in the underlying molecular mechanisms. The researchers at KI and SLU have been particularly interested in the spiders’ ability to keep proteins soluble so that they do not clump together before the spinning of the spider silk. They have previously developed a method for the production of valuable proteins which mimics the process the spider uses to produce and store its silk proteins.

Continue reading “Spider Silk Proteins Developed into Gel for Biomedical Applications” »

Aug 16, 2022

Chinese scientists find 6G radiation can increase the size of brain cells

Posted by in categories: biotech/medical, internet, neuroscience

6G radiation is affecting brain cells. As 6G as the successor of 5G is poised to take over the world, should we worry? I feel so.


Discovery could help assess new communication technology and also develop therapies to treat brain diseases, Beijing researchers say.

Continue reading “Chinese scientists find 6G radiation can increase the size of brain cells” »

Aug 16, 2022

Multiferroics Are a Spintronics Game Changer

Posted by in categories: materials, particle physics

A new experiment shows that spin currents can be controlled electrically in the room temperature multiferroic material.

Aug 16, 2022

Team reports giant response of semiconductors to light

Posted by in categories: electronics, materials

In an example of the adage “everything old is new again,” MIT engineers report a new discovery in semiconductors, well-known materials that have been the focus of intense study for over 100 years thanks to their many applications in electronic devices.

The team found that these important materials not only become much stiffer in response to light, but the effect is reversible when the light is turned off. The engineers also explain what is happening at the atomic scale, and show how the effect can be tuned by making the materials in a certain way—introducing specific defects—and using different colors and intensities of light.

“We’re excited about these results because we’ve uncovered a new scientific direction in an otherwise very well-trod field. In addition, we found that the phenomenon may be present in many other compounds,” says Rafael Jaramillo, the Thomas Lord Associate Professor of Materials Science and Engineering at MIT and leader of the team.

Aug 16, 2022

A Relativistic Theory of Consciousness

Posted by in categories: mathematics, neuroscience, physics

In recent decades, the scientific study of consciousness has significantly increased our understanding of this elusive phenomenon. Yet, despite critical development in our understanding of the functional side of consciousness, we still lack a fundamental theory regarding its phenomenal aspect. There is an “explanatory gap” between our scientific knowledge of functional consciousness and its “subjective,” phenomenal aspects, referred to as the “hard problem” of consciousness. The phenomenal aspect of consciousness is the first-person answer to “what it’s like” question, and it has thus far proved recalcitrant to direct scientific investigation. Naturalistic dualists argue that it is composed of a primitive, private, non-reductive element of reality that is independent from the functional and physical aspects of consciousness. Illusionists, on the other hand, argue that it is merely a cognitive illusion, and that all that exists are ultimately physical, non-phenomenal properties. We contend that both the dualist and illusionist positions are flawed because they tacitly assume consciousness to be an absolute property that doesn’t depend on the observer. We develop a conceptual and a mathematical argument for a relativistic theory of consciousness in which a system either has or doesn’t have phenomenal consciousness with respect to some observer. Phenomenal consciousness is neither private nor delusional, just relativistic. In the frame of reference of the cognitive system, it will be observable (first-person perspective) and in other frame of reference it will not (third-person perspective). These two cognitive frames of reference are both correct, just as in the case of an observer that claims to be at rest while another will claim that the observer has constant velocity. Given that consciousness is a relativistic phenomenon, neither observer position can be privileged, as they both describe the same underlying reality. Based on relativistic phenomena in physics we developed a mathematical formalization for consciousness which bridges the explanatory gap and dissolves the hard problem. Given that the first-person cognitive frame of reference also offers legitimate observations on consciousness, we conclude by arguing that philosophers can usefully contribute to the science of consciousness by collaborating with neuroscientists to explore the neural basis of phenomenal structures.

As one of the most complex structures we know of nature, the brain poses a great challenge to us in understanding how higher functions like perception, cognition, and the self arise from it. One of its most baffling abilities is its capacity for conscious experience (van Gulick, 2014). Thomas Nagel (1974) suggests a now widely accepted definition of consciousness: a being is conscious just if there is “something that it is like” to be that creature, i.e., some subjective way the world seems or appears from the creature’s point of view. For example, if bats are conscious, that means there is something it is like for a bat to experience its world through its echolocational senses. On the other hand, under deep sleep (with no dreams) humans are unconscious because there is nothing it is like for humans to experience their world in that state.

In the last several decades, consciousness has transformed from an elusive metaphysical problem into an empirical research topic. Nevertheless, it remains a puzzling and thorny issue for science. At the heart of the problem lies the question of the brute phenomena that we experience from a first-person perspective—e.g., what it is like to feel redness, happiness, or a thought. These qualitative states, or qualia, compose much of the phenomenal side of consciousness. These qualia are arranged into spatial and temporal patterns and formal structures in phenomenal experience, called eidetic or transcendental structures1. For example, while qualia pick out how a specific note sounds, eidetic structures refer to the temporal form of the whole melody. Hence, our inventory of the elusive properties of phenomenal consciousness includes both qualia and eidetic structures.

Aug 16, 2022

Smart nanoparticle shows that intermittent fasting may protect the heart from damage during chemotherapy

Posted by in categories: biotech/medical, nanotechnology

Although chemotherapy can be a lifesaving treatment for patients with cancer, some of these medications can damage the heart. A team led by researchers at Massachusetts General Hospital (MGH) recently developed a nanoparticle probe that can detect an indicator of heart damage from chemotherapy.

Experiments with the probe also revealed that in mice with cancer, intermittent fasting before chemotherapy can prevent this damage indicator from arising, leading to preserved cardiac function and prolonged survival.

The study, which is published in Nature Biomedical Engineering, focused on autophagy—a process that cells use to remove unnecessary or dysfunctional components. A delicate balance exists between the protective and deleterious effects of this process: reduced levels of autophagy have been implicated in and other conditions; however, autophagy can also be a primary mechanism of cell death.

Page 2 of 7,61312345678Last