Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Enhanced quantum computers and beyond: Exploring magnons with superconducting qubits

Devices taking advantage of the collective quantum behavior of spin excitations in magnetic materials—known as magnons—have the potential to improve quantum computing devices. However, using magnons in quantum devices requires an in-depth understanding of their nature and limitations. A new experimental technique uses superconducting qubits to sensitively characterize magnon behavior in previously unexplored regimes.

Researchers in the Grainger College of Engineering at the University of Illinois Urbana-Champaign have reported in the journal Physical Review Applied that highly excited magnon behavior in can be accurately characterized by coupling the material to a superconducting qubit via a microwave cavity. This setup allowed the researchers to characterize both the number of magnons and their lifetimes when thousands of excitations are present, a regime that has not been studied well.

“To be useful in quantum computing applications, limitations on magnon systems need to be understood properly,” said Sonia Rani, the study’s lead author. “The problem is that there isn’t a good theory for when certain effects become important, and if we should expect them to lead to detrimental effects.

Q&A: Companies are racing to develop the first useful quantum computer—ultracold neutral atoms could be the key

The race to build the first useful quantum computer is on and may revolutionize the world with brand new capabilities, from medicine to freight logistics.

Tech companies all want to take the crown, with Microsoft announcing the first of its kind quantum chip in February, only days before Google’s breakthrough on .

As the race heats up, companies are turning to a new ultracold solution—neutral atoms—which Swinburne University of Technology has been exploring and making discoveries in for two decades.

Major Graphene Breakthrough: Magnet-Free Spin Currents Could Supercharge Quantum Computing

Scientists at TU Delft have unlocked a key quantum effect in graphene without using any magnetic fields, paving the way for ultra-thin quantum circuits. By layering graphene on a special magnetic crystal, they created stable spin currents that travel along the edges of the material. These current

Breaking the Rules of Magnetism: Unusual Crystal Surprises Physicists With Cooling Effect

The research team has identified atacamite as a material with magnetocaloric properties. Natural crystals have long captivated us with their vivid colors, flawless geometry, and striking symmetry. But for scientists, these beautiful formations offer more than just visual delight. Hidden within thei

A Fiery Mineral Found in an Icy Asteroid Baffles Scientists

A tiny grain from asteroid Ryugu has revealed djerfisherite, a mineral that normally forms in scorching, oxygen-poor settings—conditions Ryugu was never thought to experience.

The surprise find hints that the asteroid either endured unexpected heat spikes or captured exotic material transported across the early Solar System. Microscopy and chemical clues now challenge the idea that Ryugu is compositionally uniform and point to a far more chaotic mixing of planetary building blocks. Scientists are turning to isotopic “fingerprints” to trace the grain’s true origin and decode how primitive asteroids really formed.

Hayabusa2 brings ryugu samples & surprising mineral clues.

3D Time Could Solve Physics’ Biggest Problem, Says Bizarre New Study

Clocks might be far more fundamental to physics than we ever realized.

A new theory suggests what we see around us – from the smallest of quantum actions to the cosmic crawl of entire galaxies – could all be literally a matter of time. Three dimensions of time, in fact.

The basic idea of 3D time isn’t new. But University of Alaska geophysicist Gunther Kletetschka says his mathematical framework is the first to reproduce known properties of the Universe, making it a somewhat serious contender for uniting physics under one consistent model.