Toggle light / dark theme

Punishing conditions in the clouds of Venus could be home to a DNA-like molecule capable of forming genes in life very different to that on Earth, according to a new study.

Long thought to be hostile to complex organic chemistry because of the absence of water, the clouds of Earth’s sister planet are made of droplets of , chlorine, iron, and other substances.

But research led by Wrocław University of Science and Technology shows how peptide nucleic acid (PNA)—a structural cousin of DNA—can survive under lab conditions made to mimic conditions that can occur in Venus’ perpetual clouds.

Molding the flow of light—whether confined to localized regions or propagating in free space—remains crucial for modern integrated photonics. The advancement of the multi-channel, programmable optical waveguide and coupler arrays has enabled us to develop photonic integrated circuits (PICs) as a viable alternative to electronic ones, overcoming limitations in processing speed, bandwidth, and efficiency across the optical-to-microwave spectrum.

However, as on-chip complexity grows, we face significant challenges regarding long-term stability and fabrication-induced defects, making operational reliability critical for practical applications.

The increasing demand for high-capacity information processing drives our need for more complex PICs with additional channels. In this context, topological photonics offers promising solutions due to its inherent robustness against defects.

Technology is being pushed to its very limits. The upgrades to the Large Hadron Collider (LHC) at CERN slated for the next few years will increase data transfer rates beyond what the current neutrino detector for the FASER experiment can cope with, requiring it to be replaced by a new kind of more powerful detector.

This is a task that physicist Professor Matthias Schott from the University of Bonn will be tackling.

Extremely lightweight, electrically neutral and found almost everywhere in the universe, neutrinos are among its most ubiquitous particles and thus one of its basic building blocks. To researchers, however, these virtually massless elementary particles are still “ghost particles.”

Since the start of the year, the Russian state-backed ColdRiver hacking group has been using new LostKeys malware to steal files in espionage attacks targeting Western governments, journalists, think tanks, and non-governmental organizations.

In December, the United Kingdom and Five Eyes allies linked ColdRiver to Russia’s Federal Security Service (FSB), the country’s counterintelligence and internal security service.

Google Threat Intelligence Group (GTIG) first observed LostKeys being “deployed in highly selective cases” in January as part of ClickFix social engineering attacks, where the threat actors trick targets into running malicious PowerShell scripts.

Scientists and space explorers have been on the hunt to determine where and how much ice is present on the Moon. Water ice would be an important resource at a future lunar base, as it could be used to support humans or be broken down to hydrogen and oxygen, key components of rocket fuel. University of Hawai’i at Manoa researchers are using two innovative approaches to advance the search for ice on the Moon.

ShadowCam scouts for surface ice.

Water ice was previously detected in the permanently shaded regions of the Moon’s north and south poles by Shuai Li, assistant researcher at the Hawai’i Institute of Geophysics and Planetology (HIGP) in the UH Manoa School of Ocean and Earth Science and Technology (SOEST). A new study led by Jordan Ando, planetary sciences graduate student in Li’s laboratory, examined images from a specialized camera, the “ShadowCam,” that was on board the Korea Aerospace Research Institute Korea Lunar Pathfinder Orbiter.