The skin is the largest organ in the human body. It makes up around 15 percent of our body weight and protects us from pathogens, dehydration and temperature extremes. Skin diseases are therefore more than just unpleasant – they can quickly become dangerous for affected patients. Although conditions such as skin cancer, chronic wounds and autoimmune skin diseases are widespread, we often still don’t fully understand about why they develop and how we can treat them effectively.
To find answers to these questions, Empa researchers are working together with clinical partners on a model of human skin. The model will allow scientists to simulate skin diseases and thus better understand them. This is not a computer or plastic model. Rather, researchers from Empa’s Laboratory for Biomimetic Membranes and Textiles and its Laboratory for Biointerfaces aim to produce a living “artificial skin” that contains cells and emulates the layered and wrinkled structure of human skin. The project is part of the Swiss research initiative SKINTEGRITY.CH.
In order to recreate something as complex as skin, suitable building materials are needed. This is where Empa researchers have recently made progress: They have developed a hydrogel that meets the complex requirements while being easy to manufacture. The basis: gelatin from the skin of cold-water fish.