Menu

Blog

Page 2

Jan 17, 2025

World-first quantum entanglement of molecules at 92% fidelity, UK achieves ‘magic’

Posted by in categories: computing, quantum physics

UK researchers used special optical tweezers to attain quantum entanglement of molecules that could unlock multiple applications in quantum computing.

Jan 17, 2025

Strange Swapping Behavior Defines New Particle Candidate

Posted by in category: particle physics

Researchers predict the existence of a class of particles that behave differently from those already known.

Jan 17, 2025

Biological Magnetic Sensing Comes Close to Quantum Limit

Posted by in categories: biological, quantum physics

Researchers find that two types of biological magnetic sensor can sense fields close to the quantum limit, a finding that could guide the design of lab-made devices.

Jan 17, 2025

Building a Scalable Ion Clock with a Coulomb Crystal

Posted by in category: habitats

Researchers have built an optical clock using an array of trapped ions—an architecture that can be scaled up to boost the clock’s precision.

Jan 17, 2025

New chainmail-like material could be the future of armor

Posted by in categories: chemistry, nanotechnology

In a remarkable feat of chemistry, a Northwestern University-led research team has developed the first two-dimensional (2D) mechanically interlocked material.

Resembling the interlocking links in chainmail, the nanoscale material exhibits exceptional flexibility and strength. With further work, it holds promise for use in high-performance, light-weight body armor and other uses that demand lightweight, flexible and tough materials.

Publishing on Jan. 17 in the journal Science, the study marks several firsts for the field. Not only is it the first 2D mechanically interlocked , but the novel material also contains 100 trillion mechanical bonds per 1 square centimeter—the highest density of mechanical bonds ever achieved.

Jan 17, 2025

Study explores link between people’s professions and their genetic predisposition to neuropsychiatric traits

Posted by in categories: biotech/medical, genetics, neuroscience

Polygenic scores (PGS) are metrics used to estimate the genetic predisposition of people to developing specific mental health conditions, personality traits or diseases. In recent years, these metrics have often been used to investigate the intricate connections between genes and environmental factors.

Researchers at the JJ Peters VA Medical Center, Icahn School of Medicine at Mount Sinai and other institutes recently carried out a study aimed at determining whether neuropsychiatric could predict the professional categories that individuals belong to. Their findings, published in Nature Human Behaviour, suggest that these scores weakly predict the professional category that people belong to.

“Neuropsychiatric disorders are both common and highly heritable, yet they remain heavily stigmatized,” Georgios Voloudakis, first author of the paper, told Medical Xpress.

Jan 17, 2025

Anomalous Hall torque: ‘Brand new physics’ for next-generation spintronics

Posted by in categories: computing, particle physics, quantum physics

Our data-driven world demands more—more capacity, more efficiency, more computing power. To meet society’s insatiable need for electronic speed, physicists have been pushing the burgeoning field of spintronics.

Traditional electronics use the charge of electrons to encode, store and transmit information. Spintronic devices utilize both the charge and spin-orientation of electrons. By assigning a value to (up=0 and down=1), spintronic devices offer ultra-fast, energy-efficient platforms.

To develop viable spintronics, physicists must understand the quantum properties within materials. One property, known as spin-torque, is crucial for the electrical manipulation of magnetization that’s required for the next generation of storage and processing technologies.

Jan 17, 2025

Is the moon a chunk ejected from Earth? Study sheds light on moon formation, origin of water on Earth

Posted by in categories: materials, space

A research team from the University of Göttingen and the Max Planck Institute for Solar System Research (MPS) has discovered another piece in the puzzle of the formation of the moon and water on Earth. The prevailing theory had been that the moon was the result of a collision between early Earth and the protoplanet Theia. New measurements indicate that the moon formed from material ejected from the Earth’s mantle with little contribution from Theia.

In addition, the findings support the idea that water could have reached Earth early in its development and may not have been added by late impacts. The results are published in the Proceedings of the National Academy of Sciences.

The researchers analyzed from 14 samples from the and carried out 191 measurements on minerals from Earth. Isotopes are varieties of the same element that differ only in the weight of their nucleus. The team used an improved version of laser fluorination, a method in which oxygen is released from rock using a laser.

Jan 17, 2025

Relativistic spin-orbit coupling may lead to unconventional superconductivity type

Posted by in categories: energy, information science, quantum physics

Observing the effects of special relativity doesn’t necessarily require objects moving at a significant fraction of the speed of light. In fact, length contraction in special relativity explains how electromagnets work. A magnetic field is just an electric field seen from a different frame of reference.

So, when an electron moves in the of another electron, this special relativistic effect results in the moving electron interacting with a magnetic field, and hence with the electron’s spin angular momentum.

Continue reading “Relativistic spin-orbit coupling may lead to unconventional superconductivity type” »

Jan 17, 2025

Skin-inspired optical sensor reads Braille at the speed of touch

Posted by in categories: chemistry, particle physics

An international team of chemists has successfully created methylenedistibiranes, which are three-membered rings that have two antimony atoms and one carbon atom. In their paper published in the Journal of the American Chemical Society, the group describes how they were able to make the rings using just a three-step process.

Methylenedistibiranes are generally used as intermediaries due to their ability to promote selective nucleophilic substitution, resulting in the creation of diantimonyl anions. Chemists have been wanting to be able to create them because it is difficult to use natural elements due to orbital overlap. The achievement by the team is noteworthy because making similar rings with heavier pnictogen elements like and bismuth has proven to be challenging due to changes in orbital overlap trends and energies.

To create the three-membered rings, the research team first synthesized diazadistiboylidenes using [3+2]-cycloaddition between distibene and diazoolefins, which are five-membered rings that have dual antimony, nitrogen and . The resulting stiboylidene served as an intermediary to promote the substitution of a species with bonds formed during donation of electron pairs. The researchers note that it was a surprise to them that the reaction worked as well as it did, since there are few examples of small ring formation with more than one antimony atom.

Page 2 of 12,37212345678Last