Toggle light / dark theme

Quantum science, cellular biology, and high-definition television technology converge in the development of new biosensors. Using hypersensitive quantum sensors inside living cells offers a promising way to track cell growth and diagnose diseases, including cancers, at very early stages. Some

What’s happening inside the brain of a passionate hockey fan during a big game? A new study from the University of Waterloo gives a closer look at how the brain functions when watching sports, with data showing how different a die-hard fan’s experience is from that of a casual viewer.

The study, “Understanding the sport viewership experience using functional near-infrared spectroscopy,” is published in Scientific Reports.

The researchers found that during offensive faceoff opportunities, fans deeply invested in hockey showed more activity in a part of the brain called the dorsal medial prefrontal cortex. This area is connected to emotional involvement and evaluative thinking—the mental processing we use to judge and interpret what’s happening around us.

Deep in the swamps of the American Southeast stands a quiet giant: the bald cypress (Taxodium distichum). These majestic trees, with their knobby “knees” and towering trunks, are more than just swamp dwellers—they’re some of the oldest living organisms in Eastern North America. Some have been around for more than 2,500 years, quietly thriving in nutrient-poor, flooded forests where most other trees would wither.

But life isn’t easy for these ancient . They’re under siege from a variety of threats: rising seas, insect infestations, wildfires and increasingly erratic weather patterns. Unlike most animals, trees generally don’t die of old age—they succumb to the stresses around them.

A study by Florida Atlantic University, in collaboration with Lynn University, the University of Georgia, the Georgia Department of Natural Resources, and the Georgia Museum of Natural History, reveals how dramatic shifts in climate can have long-lasting effects on even the toughest, most iconic trees—and offers a glimpse into the powerful forces that shape our natural world.

ODIA has the unique opportunity to host a defense briefing regarding the space industry in Oklahoma…with a twist. The Catalyst Accelerator & The University of Tulsa is putting on a Government Business Boot Camp for Oklahoma-based startups the first two weeks in June. ODIA will have an opportunity to hear an abbreviated pitch from each person in the program from 3:00 — 3:50 pm.

This study investigated neurodegeneration in MOGAD, independent of relapses, by comparing clinical, cognitive, and advanced MRI markers in MOGAD, relapsing-remitting MS, and healthy control.


Progression independent of relapse activity (PIRA) is a novel clinical concept in multiple sclerosis (MS) that describes an insidious, persistent disability accrual not related to attacks,1 occurring not only in progressive MS phenotypes but also in the early disease and relapsing-remitting phases (RRMS).1,2 PIRA seems to reflect the presence of chronic smoldering inflammation and subsequent neurodegenerative pathobiological processes in MS.2,3 Cognitive decline independent of relapse activity (cognitive PIRA) can be a sensitive measure of neurodegeneration in MS, even independent of clinical worsening,4,5 and in other neurodegenerative conditions.6,7 Longitudinal structural MRI (sMRI) brain volume loss, measured using MRI scans at different intervals, is a marker of progressive neuroaxonal loss and atrophy and has been used to assess treatment efficacy in MS.8–11 White matter atrophy involves myelin and axonal loss, often caused by Wallerian degeneration. Gray matter atrophy is widespread, affecting areas such as the neocortex, thalamus, hippocampus, and cerebellum, and is mainly due to neuroaxonal loss and neuronal shrinkage rather than demyelination.12–14

Diffusion-weighted imaging (dMRI) is an advanced MRI approach allowing the evaluation of the microstructural brain tissue damage. Neurite orientation dispersion and density imaging (NODDI) is a water-diffusion model, which can interpret changes within one of the three compartments: intra-axonal (neurite density index—NDI), extraneurite (ODI), and free water (isotropic volume fraction—ISOVF).15 The histopathologic validation studies on the NODDI model have shown significant correlations between the ODI and circular variance, a marker of neurite orientation variability, as well as between ODI and myelin staining fraction in MS samples.16 Negative correlations were observed between the NDI and circular variance in healthy controls (HCs) and positive correlations between NDI and markers of myelin, axon, and microglia content.

IN A NUTSHELL 🔬 Japanese scientists have developed a groundbreaking technique using quantum mechanics to analyze plasma turbulence. 📊 The new method, called multi-field singular value decomposition, provides clearer insights into the interactions within fusion plasmas. 🌊 The research has implications beyond plasma physics, potentially impacting fields like weather dynamics and social systems. 🔍 By