Toggle light / dark theme

In the future, quantum computers could rapidly simulate new materials or help scientists develop faster machine‐learning models, opening the door to many new possibilities.

But these applications will only be possible if quantum computers can perform operations extremely quickly, so scientists can make measurements and perform corrections before compounding error rates reduce their accuracy and reliability.

The efficiency of this measurement process, known as readout, relies on the strength of the coupling between photons, which are particles of light that carry , and artificial atoms, units of matter that are often used to store information in a quantum computer.

Electrolyzers are devices that can split water into hydrogen and oxygen using electricity and via a process known as electrolysis. In the future, these devices could help to produce hydrogen gas from water, which is valuable for a wide range of applications and could also be used to power fuel cells and decarbonize energy systems.

At the core of the water electrolysis process are electrochemical reactions known as hydrogen evolution reactions (HERs). In basic (i.e., alkaline) conditions, these reactions tend to be slow, which in turn hinders the performance of electrolyzers.

In recent years, energy researchers have been trying to design new electrode-aqueous interfaces or identify that could speed up HERs and thus enhance the ability of electrolyzers to produce hydrogen. One of the HER catalysts most employed to date is platinum, yet its performance is limited by a process known as hydrogen binding. This process entails the strong adherence of hydrogen atoms to its surface, which can block reaction sites and slow down HERs.

Alkali and alkaline earth metal hydrides hold great promise for hydrogen storage and hydrogen-involved chemical transformations due to the unique properties of hydridic hydrogen (H-). However, bulk hydrides often suffer from high lattice energy and limited exposure of active sites, hindering their catalytic performance.

In a study published in Nature Communications, a research group led by Prof. Guo Jianping and Prof. Chen Ping from the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, collaborating with Prof. Chang Fei from Yongjiang Laboratory and Prof. Rao Li, from Central China Normal University, developed atomically dispersed barium catalysts for the synthesis of deuterated alkylarenes.

Researchers synthesized atomically dispersed barium hydride catalysts on (BaH/MgO) using a convenient impregnation-hydrogenation method. This (sub)nanostructured hydride material acted as an efficient, transition metal-free heterogeneous catalyst for hydrogen activation and hydrogen isotope exchange reactions across a range of nonactivated alkylarene substrates.

Recently, Prof. Si Longlong’s team from the Shenzhen Institutes of Advanced Technology of the Chinese Academy of Sciences constructed a library of live-attenuated influenza A vaccines that utilize diverse E3 ubiquitin ligases to degrade viral proteins and achieve virus attenuation, and developed the next-generation proteolysis-targeting (PROTAR) strategy, PROTAR 2.0.

The studies were published in Nature Microbiology and Nature Chemical Biology, respectively, and expand on the PROTAR live attenuated vaccine technology that was initially introduced by the team’s study published in Nature Biotechnology in 2022.

To prevent influenza, vaccination is widely considered as the most effective way. Currently, the majority of licensed influenza vaccines are inactivated (IIV) and cold-adapted live-attenuated influenza vaccine (CAIV). However, traditional vaccine strategies can result in the loss or incomplete matching of natural antigens from circulating influenza strains, potentially leading to reduced vaccine efficacy.

In a comprehensive Genomic Press perspective article published today, researchers from Fudan University and Shanghai University of Traditional Chinese Medicine have highlighted remarkable advances in the development of positron emission tomography (PET) tracers capable of visualizing α-synuclein aggregates in the brains of patients with Parkinson’s disease and related disorders.

The abnormal accumulation of α-synuclein protein is a defining pathological feature of several neurodegenerative conditions collectively known as synucleinopathies, including Parkinson’s disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB). Until recently, confirming the presence of these protein aggregates required post-mortem examination, severely limiting early diagnosis and treatment monitoring capabilities.

“The ability to visualize these protein aggregates in living patients represents a significant leap forward in neurodegenerative disease research,” explains Dr. Fang Xie, corresponding author and researcher at the Department of Nuclear Medicine & PET Center at Huashan Hospital, Fudan University.

Researchers at the University Health Network (UHN) and the University of Toronto have developed a skin-based test that can detect signature features of progressive supranuclear palsy (PSP), a rare neurodegenerative disease that affects body movements, including walking, balance and swallowing.

The test, which the researchers describe in a recent issue of JAMA Neurology, could allow for more accurate and faster PSP diagnosis than current methods.

“This is important for assigning patients to the correct , but it will be even more important in the future as researchers develop targeted, precision treatments for PSP,” says Ivan Martinez-Valbuena, a scientific associate at the Rossy Progressive Supranuclear Palsy Centre at the UHN’s Krembil Brain Institute and U of T’s Tanz Centre for Research in Neurodegenerative Diseases.