Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

LUX-ZEPLIN experiment sets more stringent constraints on cosmic ray-boosted dark matter

Dark matter, a type of matter that does not emit, absorb, or reflect light, is predicted to account for most of the universe’s mass. While theoretical predictions hint at its abundance, detecting this elusive matter has so far proved to be very difficult, leaving its composition and origin a mystery.

One widely explored hypothesis is that consists of weakly interacting , or WIMPs for short. These particles are theorized to only interact with via gravity and potentially via weak nuclear forces.

The LUX-ZEPLIN (LZ) experiment is a large-scale research effort aimed at searching for signals associated with the presence of WIMPs using a sophisticated detector known as a dual-phase xenon time projection chamber. The researchers involved in the experiment recently published their most recent findings in a paper in Physical Review Letters, which places more stringent constraints on lighter dark matter particles that could have gained energy after colliding with cosmic rays.

Next-gen tech for at-home use can quickly detect endometriosis biomarker in period blood

Almost 200 million people, including children, around the world have endometriosis, a chronic disease in which the lining of the uterus grows outside of the uterus. More severe symptoms, such as extreme pain and potentially infertility, can often be mitigated with early identification and treatment, but no single point-of-care diagnostic test for the disease exists despite the ease of access to the tissue directly implicated.

While Penn State Professor Dipanjan Pan said that the blood and tissue shed from the uterus each month is often overlooked—and even stigmatized by some—as medical waste, menstrual effluent could enable earlier, more accessible detection of biological markers to help diagnose this disease.

Pan and his group have developed a proof-of-concept device capable of detecting HMGB1, a protein implicated in endometriosis development and progression, in menstrual blood with 500% more sensitivity than existing laboratory approaches. The device, which looks and operates much like a pregnancy test in how it detects the protein, hinges on a novel technique to synthesize nanosheets made of the atomically thin 2D material borophene, according to Pan, the Dorothy Foehr Huck & J. Lloyd Huck Chair Professor in Nanomedicine and corresponding author of the study detailing the team’s work.

Gold clusters mimic atomic spin properties for scalable quantum computing applications

The efficiency of quantum computers, sensors and other applications often relies on the properties of electrons, including how they are spinning. One of the most accurate systems for high-performance quantum applications relies on tapping into the spin properties of electrons of atoms trapped in a gas, but these systems are difficult to scale up for use in larger quantum devices like quantum computers.

Now, a team of researchers from Penn State and Colorado State has demonstrated how a gold cluster can mimic these gaseous, trapped atoms, allowing scientists to take advantage of these spin properties in a system that can be easily scaled up.

“For the first time, we show that have the same key spin properties as the current state-of-the-art methods for quantum information systems,” said Ken Knappenberger, department head and professor of chemistry in the Penn State Eberly College of Science and leader of the research team.

Tailored deep brain stimulation improves walking in Parkinson’s disease

For patients with Parkinson’s disease, changes in their ability to walk can be dramatic. “Parkinson’s gait,” as it is often called, can include changes in step length and asymmetry between legs. This gait dysfunction reduces a person’s mobility, increases fall risk, and significantly impacts a patient’s quality of life.

While (DBS) is highly effective for lessening symptoms of tremors, rigidity, and bradykinesia (the slowing of movement), its impact on gait has been more variable and less predictable among patients with advanced gait-related problems. Significant challenges in enhancing DBS outcomes for advanced gait disorders have included the lack of a standardized gait metric for clinicians to use during programming, as well as understanding the impact of different stimulation factors on gait.

In a recent study, researchers at UCSF developed a systematic way to quantify key aspects of gait relevant to Parkinson’s and used machine learning to identify the best DBS settings for each individual. These personalized settings led to meaningful improvements in walking, such as faster, more stable steps, without worsening other symptoms.

Physicists Break Quantum Barrier With Record-Breaking Qubit Coherence

The result points to a significant advance in computing power, prompting researchers to replicate the groundbreaking measurement. On July 8, 2025, researchers at Aalto University in Finland reported a transmon qubit coherence time that significantly exceeds all previously published scientific ben

Earth’s Kryptonite: The Real Mineral Stranger Than Fiction

Not just known from Superman stories, this mineral’s unique properties could play a key role in powering Australia’s energy transition. Kryptonite’s twin on Earth Often referred to as “Earth’s kryptonite twin,” jadarite is a rare and intriguing mineral that has sparked interest among both scientis

Should We Be Concerned? Autism Diagnoses Continue To Skyrocket

Autism diagnoses have risen with better awareness and broader definitions. Experts say it’s a sign of improved detection, not just more cases. Autism diagnoses have risen sharply in recent decades, shifting from a relatively rare condition to one now affecting 1 in 36 children. This significan

From cosmic strings to computer chips: Cooling rate triggers phase transitions in silicon surfaces

Solar cells and computer chips need silicon layers that are as perfect as possible. Every imperfection in the crystalline structure increases the risk of reduced efficiency or defective switching processes.

If you know how arrange themselves to form a on a thin surface, you gain fundamental insights into controlling crystal growth. To this end, an international research team analyzed the behavior of silicon that was flash-frozen. The study is published in the journal Physical Review Letters.

The results show that the speed of cooling has a major impact on the structure of silicon surfaces. The underlying mechanism may also have occurred during phase transitions in the early universe shortly after the Big Bang.

How do water rings ‘bounce?’ New discovery answers decades-old question

Air rings blown by dolphins swimming underwater and rings of smoke emitted by jet engines are just two examples of vortex rings. These doughnut-shaped structures and their mesmerizing movement have been studied for decades given their role in propulsion and—in the case of jellyfish and other invertebrates—biological locomotion.

A team of researchers at New York University and NYU Shanghai has uncovered a remarkable property of vortex rings that has been overlooked for more than a century—one that illuminates how these rings respond when they move through water and reach air (i.e., at the water-air interface).

When a vortex traveling sideways and up through water reaches the surface and meets air, it can rebound while largely maintaining its shape—much like a bouncing off a wall. After the reflection, the ring loses only a small fraction of its energy. However, if the vortex ring moves more directly upward, it breaks apart instead of bouncing.