Toggle light / dark theme

As the growth in global electricity need and supply continues to accelerate, efficient power electronics will be key to improving grid efficiency, stability, integration, and resilience for all energy sources.

Advances in wide-bandgap materials for semiconductors offer the potential to enable greater power handling in power electronics while reducing electrical and thermal losses. Wide-bandgap materials also allow for smaller, faster, more reliable, and more energy-efficient power electronic components than current commercial silicon-based power .

Researchers from the National Renewable Energy Laboratory (NREL), the Colorado School of Mines, and Oak Ridge National Laboratory examined a potential route to achieve peak performance of aluminum gallium nitride, AlxGa1-x N, a key material for increasing power electronics’ energy efficiency and performance, through growth on optimized substrate materials.

In a fun experiment, Max Koch, a researcher at the University of Göttingen in Germany—who also happens to be passionate about homebrewing—decided to use a high-speed camera to capture what occurs while opening a swing-top bottle of homebrew.

When Robert Mettin, who leads the Ultrasound and Cavitation group at the university’s Third Institute of Physics, Biophysics, suggested that Koch should submit the findings to the special “kitchen flows” issue of Physics of Fluids, Koch and his colleagues chose to expand on the home experiment and delve into the novel acoustics and physics at play.

The group found that the sound emitted by opening a pressurized bottle with a swing-top lid isn’t a single shockwave, but rather a very quick “ah” sound. Their high-speed video recordings captured condensation within the bottleneck that vibrated up and down in a .

Optical fibers provide an excellent platform for transmitting light over long distances, manipulating it and enhancing light-matter interaction. Now, the “Ultrafast & Twisted Photonics” research group at the Max Planck Institute for the Science of Light (MPL) has developed a new hollow-core fiber that selectively guides optical vortices depending on their helicity and has potential applications in chiral sensing, vortex mode generation, and optical communications.

The results were recently published in the journal ACS Photonics.

In addition to transmitting light over long distances, provide convenient ways of enhancing the interaction of light with matter and manipulating the properties of the guided light. Among several light attributes, pure polarization states are crucial for many applications and research areas.

Heavy-ion therapy, one of the most advanced radiotherapy techniques, has proven to be more effective than conventional X-rays and proton radiation in cancer treatment. However, the mechanisms behind this superior biological effectiveness remain unclear.

Published in Physical Review X on March 11, a new study has uncovered a key mechanism involving intermolecular Coulombic decay (ICD) in aqueous environments initiated by heavy-ion irradiation, providing insights about the effectiveness of such irradiation.

The study was conducted by researchers from the Institute of Modern Physics (IMP) of the Chinese Academy of Sciences (CAS), in collaboration with researchers from Russia’s Irkutsk State University, Germany’s Heidelberg University, the University of Science and Technology of China, Xi’an Jiaotong University, and Lanzhou University.

Led by researchers at the University of Eastern Finland, a recent study demonstrates that random light acquires an additional phase factor, known as the geometric phase, when its oscillation direction (i.e., polarization) is altered in a deterministic manner.

Light is an that oscillates periodically, and its phase refers to a specific point in the cycle. Light can be highly organized, meaning the waves oscillate in a specific direction, or its direction may involve randomness.

Previous studies have shown that altering the polarization of well-organized leads to an accumulation of an additional phase. The current study extends the analysis to random light.

Scientists have unlocked a new way to control ionization, the process where atoms lose electrons, using specially designed light beams

By leveraging optical vortex beams, light that carries angular momentum, they can precisely dictate how electrons break free from atoms. This discovery could reshape imaging technology, enhance particle acceleration, and open doors to advancements in quantum computing.

Performing computation using quantum-mechanical phenomena such as superposition and entanglement.

Researchers have simplified a highly complex quantum imaging technique, 2DES, used to observe ultrafast electron interactions.

By refining an existing interferometer design, they improved control over laser pulses, unlocking new capabilities for studying energy transfer in materials.

Unveiling the ultrafast world of electrons.

New insights from the Atacama Cosmology Telescope offer unprecedented images of the universe at 380,000 years old, revealing movements and polarization of cosmic light with exceptional clarity.

These findings not only enhance our understanding of cosmic microwave background radiation but also confirm the fundamental theories of cosmic structure and expansion, while setting new standards for observational cosmology.

Revolutionary Universe Imaging

A curiosity about tiny dots on a germanium wafer with metal films led to the discovery of intricate spiral patterns etched by a chemical reaction. Further experiments revealed that these patterns emerge from chemical reactions interacting with mechanical forces through a deforming catalyst. This breakthrough marks the most significant advance in studying chemical pattern formation since the 1950s. Understanding these complex systems could shed light on natural processes like crack formation in materials and the effects of stress on biological growth.

University of California, Los Angeles doctoral student Yilin Wong noticed tiny dots appearing on one of her samples, which had been accidentally left out overnight. The layered sample consisted of a germanium wafer topped with evaporated metal films in contact with a drop of water. On a whim, she examined the dots under a microscope and couldn’t believe her eyes. Beautiful spiral patterns had been etched into the germanium surface by a chemical reaction.

Wong’s curiosity led her on a journey of discovery, revealing something never seen before: hundreds of nearly identical spiral patterns spontaneously forming on a centimeter-square germanium chip. Even more remarkably, small changes in experimental parameters, such as the thickness of the metal film, produced different patterns, including Archimedean spirals, logarithmic spirals, lotus flower shapes, radially symmetric patterns, and more.

Since it was first synthesized in a post-WW2 American lab in 1949, berkelium has been a rebel of the periodic table, defying quantum mechanics and taking on an extra positive charge that its relatives would never.

Now, a team of scientists from berkelium’s alma mater, Lawrence Berkeley National Laboratory, has wrangled the elusive element into a rare partnership with carbon that will enable them to study it in more detail.

Thanks to challenges involved in producing and safely containing the heavy element, few chemists have had the privilege of dealing with berkelium. Just one gram of the stuff can cost a boggling US$27 million. For this experiment, just 0.3 milligrams of berkelium-249 was required.