While the Standard Model ℠ describes all known fundamental particles and many of the interactions between them, it fails to explain dark matter, dark energy and the apparent asymmetry between matter and antimatter in the universe. Over the past decades, physicists have thus introduced various frameworks and methods to study physics beyond the SM, one of which is known as the King plot.
The King plot is a graphical technique used to analyze isotope shifts, variations in the energy levels of different isotopes (e.g., atoms of the same element that contain a different number of neutrons). This graphical tool has proved promising for separating effects explained by the SM from signals linked to new physics.
Researchers at Physikalisch-Technische Bundesanstalt, Max Planck Institute for Nuclear Physics, and ETH Zurich recently collected new measurements that tightened King plot-based constraints on the properties of a hypothetical particle that has not yet been observed, known as a Yukawa-type boson.