Toggle light / dark theme

Researchers at The Ohio State University Wexner Medical Center and College of Medicine have discovered a new way that neurons act in neurodegeneration by using human neural organoids—also known as “mini-brain” models—from patients with frontotemporal lobar degeneration (FTLD).

Understanding this new pathway could help researchers find better treatments for FTLD and Alzheimer’s, the two most common forms of dementia that lead to .

Researchers used advanced techniques to study from patients and mice, including growing human neural organoids (mini-brains) that can feature several cell types found in the brain.

Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/upandatom.
Watch Is Math Invented or Discovered? https://nebula.tv/videos/up-and-atom-is-mathematics-invented-or-discovered.
Watch Becoming Human: https://nebula.tv/becominghuman.
Watch The Raising of the Titanic https://nebula.tv/videos/neo-the-raising-of-the-titanic.

Special thanks to Elliot Glazer, Thomas Gilton, Joel David Hamkins, Timothy Chow and Hugh Woodin for their consultation on this video.

Hi! I’m Jade. If you’d like to consider supporting Up and Atom, head over to my Patreon page smile
https://www.patreon.com/upandatom.

Visit the Up and Atom store.
https://store.nebula.app/collections/up-and-atom.

https://www.youtube.com/c/upandatom.

For a one time donation, head over to my PayPal smile https://www.paypal.me/upandatomshows.

Neurons are specialized brain cells responsible for transmitting signals throughout the body. For a long time, scientists believed that once neurons develop from stem cells into a specific subtype, their identity remains fixed, regardless of changes in their surrounding environment.

However, new research from the Braingeneers, a collaborative team of scientists from UC Santa Cruz and UC San Francisco, challenges this long-held belief.

In a study published in iScience, the Braingeneers report that neuronal subtype identity may be more flexible than previously thought. The team used cerebral organoids, 3D models of brain tissue, to investigate how neurons develop and adapt. Their findings offer new insights into how different neuron subtypes influence brain function and may play a role in neurodevelopmental disorders.

In answer, the team needed to develop an affordable catalyst that could improve the salty electrode. For reference, when batteries operate, ions move between the anode and cathode through the electrolyte, per a U.S. Department of Energy description.

This is where wood waste and urine enter the lab, replacing platinum as a catalyst. The UNIST creation facilitates effective electrochemical reactions and quick discharges. The experts used lignin, abundant in wood and used to make paper and biofuels, in combination with urea. Urea is a nitrogen-rich substance found in wastewater, UNIST reported.

“Conventional electrocatalysts, primarily noble metals, are scarce and expensive. In this context, carbon materials derived from biowaste have garnered considerable attention,” according to the abstract.

At 102, Mike attributes his longevity and active lifestyle to a macrobiotic diet and physical discipline. Diagnosed with cancer at 69, he turned to a whole, plant-based diet, which he believes, along with regular exercise and minimalistic living, reversed his condition and maintains his vitality.

People diagnosed with various mental health disorders can sometimes start engaging in intense political behavior, such as violent protests, civil disobedience and the aggressive expression of political views. So far, however, the link between political behavior and the brain has been rarely explored, as it was not viewed as central to the understanding of mental health disorders.

Researchers at Harvard Medical School, Stanford University School of Medicine and Northwestern University Feinberg School of Medicine recently carried out a study investigating the neural underpinnings of political behavior. Their findings, published in Brain, unveil the existence of a brain circuit that is associated with the intensity of people’s political involvement, irrespective of their ideology or party affiliation.

“This paper started out as a collaborative effort that focused on learning how to help people better come together and thrive, alongside Stephanie Balters at Stanford,” Shan H. Siddiqi, first author of the paper, told Phys.org.