Toggle light / dark theme

A new study led by researchers at the Universities of Oxford, Cambridge and Manchester has achieved a major advance in quantum materials, developing a method to precisely engineer single quantum defects in diamond—an essential step toward scalable quantum technologies. The results have been published in the journal Nature Communications.

Using a new two-step fabrication method, the researchers demonstrated for the first time that it is possible to create and monitor, “as they switch on,” individual Group-IV quantum defects in diamond—tiny imperfections in the diamond that can store and transmit information using the exotic rules of quantum physics.

By carefully placing single tin atoms into synthetic diamond crystals and then using an ultrafast laser to activate them, the team achieved pinpoint control over where and how these quantum features appear. This level of precision is vital for making practical, large-scale quantum networks capable of ultra-secure communication and distributed quantum computing to tackle currently unsolvable problems.

As quantum computing develops, scientists are working to identify tasks for which quantum computers have a clear advantage over classical computers. So far, researchers have only pinpointed a handful of these problems, but in a new paper published in Physical Review Letters, scientists at Los Alamos National Laboratory have added one more problem to this very short list.

“One of the central questions that faces is what classes of problems they can most efficiently solve but cannot,” says Marco Cerezo, the Los Alamos team’s lead scientist. “At the moment, this is the Holy Grail of quantum computing, because you can count on two hands such problems. In this paper, we’ve just added another.”

Quantum computing harnesses the unique laws of quantum physics, such as superposition, entanglement and interference, which allow for information processing capabilities beyond those of classical devices. When fully realized, quantum computing promises to make advancements in cryptography, simulations of quantum systems and data analysis, among many other fields. But before this can happen, researchers still need to develop the foundational science of quantum computing.

There are more than 100,000 people on organ transplant lists in the U.S., some of whom will wait years to receive one—and some may not survive the wait. Even with a good match, there is a chance that a person’s body will reject the organ. To shorten waiting periods and reduce the possibility of rejection, researchers in regenerative medicine are developing methods to use a patient’s own cells to fabricate personalized hearts, kidneys, livers, and other organs on demand.

Ensuring that oxygen and nutrients can reach every part of a newly grown organ is an ongoing challenge. Researchers at Stanford have created new tools to design and 3D print the incredibly complex vascular trees needed to carry blood throughout an organ. Their platform, published June 12 in Science, generates designs that resemble what we actually see in the human body significantly faster than previous attempts and is able to translate those designs into instructions for a 3D printer.

“The ability to scale up bioprinted tissues is currently limited by the ability to generate vasculature for them—you can’t scale up these tissues without providing a ,” said Alison Marsden, the Douglas M. and Nola Leishman Professor of Cardiovascular Diseases, professor of pediatrics and of bioengineering at Stanford in the Schools of Engineering and Medicine and co-senior author on the paper. “We were able to make the algorithm for generating the vasculature run about 200 times faster than prior methods, and we can generate it for complex shapes, like organs.”

Two RIKEN researchers have used a scheme for simplifying data to mimic how the brain of a fruit fly reduces the complexity of information about smells it perceives. This could also help enhance our understanding of how the human brain processes sensory data.

The work is published in the journal Science Advances.

Sensors related to our five senses are constantly providing huge amounts of information to the . It would quickly become overloaded if it tried to process that sensory information without first simplifying it by reducing its number of dimensions.

Researchers have identified a form of molecular motion that has not previously been observed. When what are known as “guest molecules”—molecules that are accommodated within a host molecule—penetrate droplets of DNA polymers, they do not simply diffuse in them in a haphazard fashion, but propagate through them in the form of a clearly-defined frontal wave. The team includes researchers from Johannes Gutenberg University Mainz (JGU), the Max Planck Institute for Polymer Research and the University of Texas at Austin.

“This is an effect we did not expect at all,” points out Weixiang Chen of the Department of Chemistry at JGU, who played a major role in the discovery. The findings of the research team are published in the journal Nature Nanotechnology.

The new insights are not only fundamental to our understanding of how cells regulate signals, but they could also contribute to the development of intelligent biomaterials, innovative types of membranes, programmable carriers of active ingredients and synthetic cell systems able to imitate the organizational complexity of the processes in living beings.

The Hong Kong University of Science and Technology (HKUST)-led research team has adopted gyromagnetic double-zero-index metamaterials (GDZIMs)—a new optical extreme-parameter material—and developed a new method to control light using GDZIMs. This discovery could revolutionize fields like optical communications, biomedical imaging, and nanotechnology, enabling advances in integrated photonic chips, high-fidelity optical communication, and quantum light sources.

The study published in Nature was co-led by Prof. Chan Che-Ting, Interim Director of the HKUST Jockey Club Institute for Advanced Study and Chair Professor in the Department of Physics, and Dr. Zhang Ruoyang, Visiting Scholar in the Department of Physics at HKUST.

In squash, the “nick shot” is an emphatic, point-ending play in which a player strikes a ball that ricochets near the bottom of the wall and rolls flat along the floor instead of bouncing, leaving an opponent with no chance to return it.

While the shot is as old as the game itself, a team of researchers has now revealed the physics behind it, showing how perfect placement and just the right roll conspire to kill the ball’s bounce.

The research, led by Brown University Professor of Engineering Roberto Zenit, was published in Proceedings of the National Academy of Sciences. While the findings could be useful in developing shock-dampening technologies, Zenit says the work grew out of his interest in using science to explain the everyday world.

For the past six years, Los Alamos National Laboratory has led the world in trying to understand one of the most frustrating barriers that faces variational quantum computing: the barren plateau.

“Imagine a landscape of peaks and valleys,” said Marco Cerezo, the Los Alamos team’s lead scientist. “When optimizing a variational, or parameterized, , one needs to tune a series of knobs that control the solution quality and move you in the landscape. Here, a peak represents a bad solution and a valley represents a good solution. But when researchers develop algorithms, they sometimes find their model has stalled and can neither climb nor descend. It’s stuck in this space we call a barren .”

For these quantum computing methods, barren plateaus can be mathematical dead ends, preventing their implementation in large-scale realistic problems. Scientists have spent a lot of time and resources developing quantum algorithms only to find that they sometimes inexplicably stall. Understanding when and why barren plateaus arise has been a problem that has taken the community years to solve.

All humans who have ever lived were once each an individual cell, which then divided countless times to produce a body made up of about 10 trillion cells. These cells have busy lives, executing all kinds of dynamic movement: contracting every time we flex a muscle, migrating toward the site of an injury, and rhythmically beating for decades on end.

Cells are an example of active matter. As inanimate matter must burn fuel to move, like airplanes and cars, active matter is similarly animated by its consumption of energy. The basic molecule of cellular energy is (ATP), which catalyzes that enable cellular machinery to work.

Caltech researchers have now developed a bioengineered coordinate system to observe the movement of cellular machinery. The research enables a better understanding of how cells create order out of chaos, such as during or in the organized movements of chromosomes that are a prerequisite to faithful cell division.

In a new study, researchers carried out the most extensive coordinated comparison of optical clocks to date by operating clocks and the links connecting them simultaneously across six countries. Spanning thousands of kilometers, the experiment represents a significant step toward redefining the second and ultimately establishing a global optical time scale.