Toggle light / dark theme

A team of researchers led by Colorado State University graduate student Luke Wernert and Associate Professor Hua Chen has discovered a new kind of Hall effect that could enable more energy-efficient electronic devices.

Their findings, published in Physical Review Letters in collaboration with graduate student Bastián Pradenas and Professor Oleg Tchernyshyov at Johns Hopkins University, reveal a previously unknown Hall mass in complex magnets called noncollinear antiferromagnets.

The Hall effect—first discovered by Edwin Hall at Johns Hopkins in 1879—usually refers to electric current flowing sideways when exposed to an external magnetic field, creating a measurable voltage. This sideways flow underpins everything from vehicle speed sensors to phone motion detectors. But in the CSU team’s work, electrons’ spin (a tiny, intrinsic form of angular momentum) takes center stage instead of .

Tryptamine psychoactive substances, such as α-methyltryptamine (AMT), are monoamine alkaloids characterized by an indole ring structure. Rapid, highly sensitive, and specific identification of trace amounts of AMT is crucial for maintaining social stability and ensuring public safety. However, accurately detecting AMT using specific fluorescent methods is challenging due to the presence of similar amine groups and benzene rings in various other amines.

To address this challenge, a research team led by Prof. Dou Xincun from the Xinjiang Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences (CAS) has developed a novel molecular strategy to enhance and selectivity for AMT.

Their findings, published in Analytical Chemistry, emphasize tuning the electron-withdrawing strength of the π-conjugate bridge to improve the reactivity of Schiff base-based fluorescence probes with amines.

The Korea Research Institute of Standards and Science (KRISS) has developed a technology that controls the energy of single electrons in the desired form. This technology reduces the instability of electrons caused by external environments and enables stable quantum state implementation, making it a foundational technology to enhance the performance of single-electron qubits.

The research was conducted in collaboration with Jeonbuk National University, Korea Advanced Institute of Science and Technology (KAIST), and Korea Institute of Science and Technology (KIST), and the results were published in Nano Letters.

Electrons are fundamental particles that make up atoms, and when their paths are divided, they exhibit the quantum superposition phenomenon, passing through both paths (0 and 1) simultaneously.

A possible method for probing the properties of exotic particles that exist on the surfaces of an unusual type of superconductor has been theoretically proposed by two RIKEN physicists.

The paper is published in the journal Physical Review B.

When cooled to very low temperatures, two or more electrons in some solids start to behave as if they were a single particle.

At least two mass extinction events in Earth’s history were likely caused by the “devastating” effects of nearby supernova explosions, a new study suggests.

Researchers at Keele University say these super-powerful blasts—caused by the death of a massive star—may have previously stripped our planet’s atmosphere of its ozone, sparked acid rain and exposed life to harmful ultraviolet radiation from the sun.

They believe a supernova explosion close to Earth could be to blame for both the late Devonian and Ordovician extinction events, which occurred 372 and 445 million years ago respectively.

Scientists have identified a promising new way to detect life on faraway planets, hinging on worlds that look nothing like Earth and gases rarely considered in the search for extraterrestrials.

In a new Astrophysical Journal Letters paper, researchers from the University of California, Riverside, describe these gases, which could be detected in the atmospheres of exoplanets—planets outside our solar system—with the James Webb Space Telescope, or JWST.

Called methyl halides, the gases comprise a , which bears a carbon and three hydrogen atoms, attached to a halogen atom such as chlorine or bromine. They’re primarily produced on Earth by bacteria, marine algae, fungi, and some plants.

Imagine a universe where gravity isn’t a mysterious curvature of spacetime but an emergent force born directly from quantum mechanics. In a bold new paper, we take a journey that challenges our traditional view of gravity by deriving a four-dimensional force — a relativistic extension of the de Broglie-Bohm quantum force — that could reproduce gravitational phenomena even in the weak-field limit of General Relativity.

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE

Sign Up on Patreon to get access to the Space Time Discord!
/ pbsspacetime.

Superconductive materials seem miraculous. Their resistanceless flow of electricity has been exploited in some powerful ways—from super-strong magnets used in MRIs, particle accelerators and fusion plants. And then there’s, their bizarre ability to levitate in magnetic fields. But the broader use of superconductors is limited because they need to be cooled to extremely low temperatures to work. But what if we could produce superconductivity at room temperature? It would change the world.

Check out the Space Time Merch Store.
https://www.pbsspacetime.com/shop.

Sign up for the mailing list to get episode notifications and hear special announcements!
https://mailchi.mp/1a6eb8f2717d/space… the Entire Space Time Library Here: https://search.pbsspacetime.com/ Hosted by Matt O’Dowd Written by Matt O’Dowd Post Production by Leonardo Scholzer, Yago Ballarini, Adriano Leal & Stephanie Faria Directed by Andrew Kornhaber Associate Producer: Bahar Gholipour Executive Producers: Eric Brown & Andrew Kornhaber Executive in Charge for PBS: Maribel Lopez Director of Programming for PBS: Gabrielle Ewing Assistant Director of Programming for PBS: John Campbell Spacetime is produced by Kornhaber Brown for PBS Digital Studios. This program is produced by Kornhaber Brown, which is solely responsible for its content. © 2023 PBS. All rights reserved. End Credits Music by J.R.S. Schattenberg: / multidroideka Space Time Was Made Possible In Part By: Big Bang Supporters Bryce Fort Peter Barrett David Neumann Sean Maddox Alexander Tamas Morgan Hough Juan Benet Vinnie Falco Fabrice Eap Mark Rosenthal Quasar Supporters Glenn Sugden Alex Kern Ethan Cohen Stephen Wilcox Mark Heising Hypernova Supporters Stephen Spidle Chris Webb Ivari Tölp Zachary Wilson Kenneth See Gregory Forfa Bradley Voorhees Scott Gorlick Paul Stehr-Green Ben Delo Scott Gray Антон Кочков Robert Ilardi John R. Slavik Donal Botkin Edmund Fokschaner chuck zegar Jordan Young Daniel Muzquiz Gamma Ray Burst Supporters Dennis Van Hoof Koen Wilde Nicolas Katsantonis Piotr Sarnicki Massimiliano Pala Thomas Nielson Joe Pavlovic Ryan McGaughy Justin Lloyd Chuck Lukaszewski Cole B Combs Andrea Galvagni Jerry Thomas Nikhil Sharma Ryan Moser John Anderson David Giltinan Scott Hannum Bradley Ulis Craig Falls Kane Holbrook Ross Story Teng Guo Mason Dillon Matt Langford Harsh Khandhadia Thomas Tarler Susan Albee Frank Walker Michael Lev Terje Vold James Trimmier Jeremy Soller Andre Stechert Paul Wood Joe Moreira Kent Durham Ramon Nogueira The Mad Mechanic Ellis Hall John H. Austin, Jr. Diana S Poljar Faraz Khan Almog Cohen Daniel Jennings Russ Creech Jeremy Reed David Johnston Michael Barton Isaac Suttell Oliver Flanagan Bleys Goodson Robert Walter Mark Delagasse Mark Daniel Cohen Shane Calimlim Eric Kiebler Craig Stonaha Frederic Simon John Robinson Jim Hudson Alex Gan David Barnholdt David Neal John Funai Bradley Jenkins Vlad Shipulin Cody Brumfield Thomas Dougherty King Zeckendorff Dan Warren Joseph Salomone Patrick Sutton Dean Faulk.

Search the Entire Space Time Library Here: https://search.pbsspacetime.com/

Blog post with audio player, show notes, and transcript: https://www.preposterousuniverse.com/podcast/2019/06/17/epis…formation/

Patreon: https://www.patreon.com/seanmcarroll.

Cosmologists have a standard set of puzzles they think about: the nature of dark matter and dark energy, whether there was a period of inflation, the evolution of structure, and so on. But there are also even deeper questions, having to do with why there is a universe at all, and why the early universe had low entropy, that most working cosmologists don’t address. Today’s guest, Anthony Aguirre, is an exception. We talk about these deep issues, and how tackling them might lead to a very different way of thinking about our universe. At the end there’s an entertaining detour into AI and existential risk.

Anthony Aguirre received his Ph.D. in Astronomy from Harvard University. He is currently associate professor of physics at the University of California, Santa Cruz, where his research involves cosmology, inflation, and fundamental questions in physics. His new book, Cosmological Koans, is an exploration of the principles of contemporary cosmology illustrated with short stories in the style of Zen Buddhism. He is the co-founder of the Foundational Questions Institute, the Future of Life Institute, and the prediction platform Metaculus.

Two of the participants met the definition of partial success at 12 and 18 months, and the overall success of CALEC was 93% at 12 months and 92% at 18 months. Three participants received a second corneal CALEC transplant, of which one experienced complete success by the end check-up visit of the study.

Additional analysis of the impact of CALEC on vision showed varying levels of improvement of visual acuity in all 14 of the participants. The corneal procedure displayed a high safety profile with no adverse events occurring. However, one participant had a bacterial infection eight months after transplant due to chronic contact lens use. Any other adverse events were minor and were resolved quickly.

The CALEC trial is the first human study of a stem cell therapy to be funded by the National Eye Institute (NEI) branch of the NIH. However, the CALEC procedure remains an experimental procedure and it is not offered at Mass Eye and Ear or at any other hospital in America. Mass General Brigham’s Gene and Cell Therapy Institute will be conducting additional randomized-control design studies including a larger number of participants at multiple centers, with longer follow-ups before this treatment will be submitted for federal approval.