Toggle light / dark theme

As the demand for innovative materials continues to grow—particularly in response to today’s technological and environmental challenges—research into nanomaterials is emerging as a strategic field. Among these materials, quantum dots are attracting particular attention due to their unique properties and wide range of applications. A team of researchers from ULiège has recently made a significant contribution by proposing a more sustainable approach to the production of these nanostructures.

Quantum dots (QDs) are nanometer-sized semiconductor particles with unique optical and electronic properties. Their ability to absorb and emit light with high precision makes them ideal for use in , LEDs, medical imaging, and sensors.

In a recent study, researchers at ULiège developed the first intensified, scalable process to produce cadmium chalcogenide quantum dots (semiconducting compounds widely used in optoelectronics and nanotechnology) in water using a novel, biocompatible chalcogenide source (chemical elements such as sulfur, selenium, and tellurium).

Scientists from Nagoya University in Japan have developed an innovative cooling device—an ultra-thin loop heat pipe—that significantly improves heat control for electronic components in smartphones and tablets. This breakthrough successfully manages heat levels generated during intensive smartphone usage, potentially enabling the development of even thinner mobile devices capable of running demanding applications without overheating or impeding performance.

Changes in brain connectivity before and after puberty may explain why some children with a rare genetic disorder have a higher risk of developing autism or schizophrenia, according to a UCLA Health study.

Developmental psychiatric disorders like autism and schizophrenia are associated with changes in brain . However, the complexity of these conditions make it difficult to understand the underlying biological causes. By studying genetically defined , researchers at UCLA Health and collaborators have shed light on possible mechanisms.

The UCLA study examined a particular genetic condition called chromosome 22q11.2 deletion syndrome—caused by missing DNA on chromosome 22—which is associated with a higher risk of developing neuropsychiatric conditions such as autism and schizophrenia. But the underlying biological basis of this association has not been well understood.

A novel paper led by Dr. Ulrich Brose of the German Center for Integrative Biodiversity Research (iDiv) and the Friedrich Schiller University Jena is widening the understanding of how species interact within ecosystems via the so-called “Internet of Nature.”

Published in Nature Ecology and Evolution, the paper reveals that species not only exchange matter and energy but also share vital information that influences behavior, interactions, and ecosystem dynamics—revealing previously hidden characteristics of .

Traditionally, ecological studies have concentrated on material interactions, such as feeding, pollination, and seed dispersal. However, this new paper shines a light on the essential role of information exchange between species.

Technology for converting solar energy into thermal energy is ever evolving and has numerous applications. A breakthrough in the laboratory of Professor My Ali El Khakani at Institut national de la recherche scientifique (INRS) has made a significant contribution to the field.

Professor El Khakani specializes in plasma-laser processes for the development of nanostructured materials. He and his team at the Énergie Matériaux Télécommunications Research Center have developed a new photothermal material that converts sunlight into heat with unmatched efficiency. The results of their work were published in the journal Scientific Reports.

For several decades, stoichiometric titanium oxides have been known for their exceptional photocatalytic properties. A sub-stoichiometric form of this material, characterized by a slight deficiency in , is referred to as “Magnéli phases,” with specific compositions exhibiting distinct properties.

Quasicrystals (QCs) are fascinating solid materials that exhibit an intriguing atomic arrangement. Unlike regular crystals, in which atomic arrangements have an ordered repeating pattern, QCs display long-range atomic order that is not periodic. Due to this ‘quasiperiodic’ nature, QCs have unconventional symmetries that are absent in conventional crystals.

Since their Nobel Prize-winning discovery, condensed matter physics researchers have dedicated immense attention toward QCs, attempting to both realize their unique quasiperiodic magnetic order and their possible applications in spintronics and .

Ferromagnetism was recently discovered in the gold-gallium-rare earth (Au-Ga-R) icosahedral QCs (iQCs). Yet scientists were not surprised by this observation because translational periodicity—the repeating arrangement of atoms in a crystal—is not a prerequisite for the emergence of ferromagnetic order.

A simple tweak to the usual setup is all that is needed to enhance a spectroscopy technique that uses waves in the terahertz region to probe samples, RIKEN physicists have discovered. The findings are published in the journal Applied Physics Letters.

Developing techniques that can obtain spectra from tiny regions extremely rapidly is the ultimate goal of a team that Norihiko Hayazawa of the RIKEN Center for Advanced Photonics belongs to.

Until recently, the scientists had been focusing on obtaining spectra from nanoscale regions on samples. But now they are concentrating on acquiring spectra very quickly—on the order of billionths of seconds (nanoseconds)—to minimize fluctuations induced by the ambient environment.

A flexible, semi-autonomous robot could potentially locate disaster victims trapped under rubble and deliver medication within the human body. A small, soft, and flexible robot capable of crawling through earthquake debris to locate trapped victims, or navigating the human body to deliver medicin

A new model has been developed to simulate interstellar activity within our solar system and the nearby Alpha Centauri system. Interstellar material has been found within our solar system, but scientists are still working to determine its origin and how it arrived here. A recent study from Wes

The approach uses lasers and holograms to detect misalignments as small as 0.017 nanometers. Researchers at the University of Massachusetts Amherst have developed a new method for aligning 3D semiconductor chips by shining a laser through concentric metalenses patterned onto the chips, creating a