Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Super Intelligence Speculation — Computerphile

Looking to the future, just how intelligent might the current crop of Large Language Models get? Daniel Kokotajlo joins us to discuss Ai2027.

Find out more about the AI2027 paper here: http://bit.ly/4k4dIOA

Computerphile is supported by Jane Street. Learn more about them (and exciting career opportunities) at: https://jane-st.co/computerphile.

This video was filmed and edited by Sean Riley.

Computerphile is a sister project to Brady Haran’s Numberphile. More at https://www.bradyharanblog.com

Quantum breakthrough: ‘Magic states’ now easier, faster, and way less noisy

Quantum computing just got a significant boost thanks to researchers at the University of Osaka, who developed a much more efficient way to create “magic states”—a key component for fault-tolerant quantum computers. By pioneering a low-level, or “level-zero,” distillation method, they dramatically reduced the number of qubits and computational resources needed, overcoming one of the biggest obstacles: quantum noise. This innovation could accelerate the arrival of powerful quantum machines capable of revolutionizing industries from finance to biotech.

“Like Nothing Ever Seen Before”: Astronomers Discover a Colossal Milky Way Cloud Containing the Mass of 160,000 Suns

IN A NUTSHELL 🌌 Astronomers discovered a colossal molecular cloud named M4.7–0.8 in the Milky Way, weighing as much as 160,000 suns. 🔭 The Green Bank Telescope was instrumental in identifying this cloud located 23,000 light-years away, revealing its pivotal role in material transport. ⭐ Giant Molecular Clouds (GMCs) like M4.7–0.8 are critical for understanding

Sustainable cooling film could slash building energy use by 20% amid rising global temperatures

An international team of scientists has developed a biodegradable material that could slash global energy consumption without using any electricity, according to a new study published today.

The bioplastic metafilm—that can be applied to buildings, equipment and other surfaces—passively cools temperatures by as much as 9.2°C during peak sunlight and reflects almost 99% of the sun’s rays.

Developed by researchers from Zhengzhou University in China and the University of South Australia (UniSA), the new film is a sustainable and long-lasting material that could reduce building energy consumption by up to 20% a year in some of the world’s hottest cities.

Building Markets to Scale Carbon Management Solutions

Amid growing policy momentum, Carbon Management Solutions (CMS), including Carbon Capture, Utilization and Storage (CCUS), clean hydrogen, and emerging carbon markets, are gaining critical support. This report examines the evolving landscape of CMS, highlighting emerging value chains integration and novel business models.

Elemental discovery: Researchers find new oxidation state for rare earth element

A longstanding mystery of the periodic table involves a group of unique elements called lanthanides. Also known as rare earth elements, or REEs, these silvery-white metals are challenging to isolate, given their very similar chemical and physical properties. This similarity makes it difficult to distinguish REEs from one another during extraction and purification processes.

Two proteins that could lead to less toxic cancer treatments identified

Cells depend on the precise reading of DNA sequences to function correctly. This process, known as gene expression, determines which genetic instructions are activated. When this fails, the wrong parts of the genome can be activated, leading to cancers and neurodevelopmental disorders.

Scientists at the University of Geneva (UNIGE) have identified two proteins that play a key role in regulating this essential mechanism, paving the way for promising new treatments that could be more effective and less toxic than those currently available. Their findings are published in Nature Communications.

Human DNA contains over 20,000 genes and would stretch nearly two meters if fully uncoiled. To fit this enormous amount of information into a tiny space within a cell—just 10 to 100 micrometers in diameter—it must be tightly compacted. This is the job of , a complex of proteins that packages and condenses DNA within the .

Engineering biology applications for environmental solutions: potential and challenges

Engineering biology applies synthetic biology to address global environmental challenges like bioremediation, biosequestration, pollutant monitoring, and resource recovery. This perspective outlines innovations in engineering biology, its integration with other technologies (e.g., nanotechnology, IoT, AI), and commercial ventures leveraging these advancements. We also discuss commercialisation and scaling challenges, biosafety and biosecurity considerations including biocontainment strategies, social and political dimensions, and governance issues that must be addressed for successful real-world implementation. Finally, we highlight future perspectives and propose strategies to overcome existing hurdles, aiming to accelerate the adoption of engineering biology for environmental solutions.


The scale of global environmental challenges requires a multi-pronged approach, which utilises all the technologies at our disposal. Here, authors provide their perspective on the potential of engineering biology for environmental biotechnology, summarizing their thoughts on the key challenges and future possibilities for the field.