Dec 22, 2024
Charter school is replacing teachers with AI
Posted by Dan Kummer in categories: education, robotics/AI
This will really start to pick up now.
Continue reading “Charter school is replacing teachers with AI” »
This will really start to pick up now.
Continue reading “Charter school is replacing teachers with AI” »
Scientists at Nanyang Technological University, Singapore (NTU Singapore) have pioneered a 3D concrete printing method that captures and stores carbon dioxide, marking a major step toward reducing the construction industry’s environmental footprint.
The innovative technique offers a promising solution to mitigate cement’s massive carbon emissions.
The process works by integrating CO₂ and steam—byproducts of industrial processes—into the concrete mix during 3D printing. As the material is printed, CO₂ reacts with components in the concrete, forming a solid, stable compound that remains locked within the structure.
This timelapse of future technology, the 3rd year of the video series, goes on a journey exploring the human mind becoming digital. Brain chips turn memories and thoughts into data; could this data be sent out into space to live in the cosmos encoded into the magnetic fields between stars.
Other topics covered in this sci-fi documentary video include: bio-printing, asteroid habitats, terraforming Mars, the future of Teslabots, lucid dreaming, and the future of artificial intelligence and brain to computer interfaces (BCI — brain chips).
Continue reading “TIMELAPSE OF FUTURE TECHNOLOGY 3 (Sci-Fi Documentary)” »
Which brings us to the big question: what about gravity?
This is something where we can’t be certain, as gravitation remains the only known force for which we don’t have a full quantum description. Instead, we have Einstein’s general relativity as our theory of gravity, which relies on a purely classical (i.e., non-quantum) formalism for describing it. According to Einstein, spacetime behaves as a four-dimensional fabric, and it’s the curvature and evolution of that fabric that determines how matter-and-energy move through it. Similarly it’s the presence and distribution of matter-and-energy that determine the curvature and evolution of spacetime itself: the two notions are linked together in an inextricable way.
Now, over on the quantum side, our other fundamental forces and interactions have both a quantum description for particles and a quantum description for the fields themselves. All calculations performed within all quantum field theories are calculated within spacetime, and while most of the calculations we perform are undertaken with the assumption that the underlying background of spacetime is flat and uncurved, we can also insert more complex spacetime backgrounds where necessary. It was such a calculation, for example, that led Stephen Hawking to predict the emission of the radiation that bears his name from black holes: Hawking radiation. Combining quantum field theory (in that case, for electromagnetism) with the background of curved spacetime inevitably leads to such a prediction.
Thank you to today’s sponsors:
Eight Sleep: Head to https://impacttheory.co/eightsleepAugust24 and use code IMPACT to get $350 off your Pod 4 Ultra.
Netsuite: Head to https://impacttheory.co/netsuiteAugust24 for Netsuite’s one-of-a-kind flexible financing program for a few more weeks!
Aura: Secure your digital life with proactive protection for your assets, identity, family, and tech – Go to https://aura.com/impacttheory to start your free two-week trial.
Welcome to Impact Theory, I’m Tom Bilyeu and in today’s episode, Nick Bostrom and I dive into the moral and societal implications of AI as it becomes increasingly advanced.
Scientists say a phenomenon called “skin conductance,” which changes when you sweat, is a surprisingly accurate method for detecting emotions — with future robots that detect this able to tell your emotions.
Summary: A study reveals how brain cell interactions influence aging, showing that rare cell types either accelerate or slow brain aging. Neural stem cells provide a rejuvenating effect on neighboring cells, while T cells drive aging through inflammation. Researchers used advanced AI tools and a spatial single-cell atlas to map cellular interactions across the lifespan in mice.
This work sheds light on how interventions, such as enhancing neural stem cells, might combat neurodegeneration. By understanding these cellular dynamics, scientists can explore tailored therapies to slow aging and promote brain resilience. The findings also offer insights into conditions like Alzheimer’s disease, highlighting the importance of cell-to-cell interactions.
Cellular research indicates that neuropilin-1 plays a crucial role in pain signaling, presenting a potential pathway for developing or repurposing treatments to manage chronic pain.
Researchers at the NYU Pain Research Center have identified a novel receptor for nerve growth factor (NGF) that plays a critical role in pain signaling, despite being unable to signal independently. These findings, published in the Journal of Clinical Investigation, could pave the way for new treatments for arthritis, inflammatory pain, and cancer pain—addressing the limitations of previous therapies that failed in clinical trials due to side effects.
“Nerve growth factor is unusual because it’s one of the few patient-validated targets for pain,” said Nigel Bunnett, professor and chair of the Department of Molecular Pathobiology at NYU College of Dentistry and the study’s senior author. “We wanted to think of a way of circumventing side effects in an effort to find safer, non-opioid therapies for arthritis and other forms of chronic pain.”