Toggle light / dark theme

What if your mind could break free from the confines of space and time? A declassified CIA report from 1983 dives into a bizarre experiment known as the Gateway Experience, where scientists explored the possibility of transcending physical reality. The document hints at synchronized brainwaves, universal consciousness, and even timeless perception. But what did the CIA really uncover?

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

This breakthrough overcomes a major challenge—scalability—by allowing small quantum devices to work together rather than trying to cram millions of qubits into a single machine. Using photonic links, they achieved quantum teleportation of logical gates across modules, essentially “wiring” them together. This distributed approach mirrors how supercomputers function, offering a flexible and upgradeable system.

First Distributed Quantum Computer

In a major step toward making quantum computing practical on a large scale, scientists at Oxford University Physics have successfully demonstrated distributed quantum computing for the first time. By connecting two separate quantum processors using a photonic network interface, they effectively created a single, fully integrated quantum computer. This breakthrough opens the door to solving complex problems that were previously impossible to tackle. Their findings were published today (February 5) in Nature.

More than 800 researchers, policy makers and government officials from around the world gathered in Paris this week to attend the official launch of the International Year of Quantum Science and Technology (IYQ). Held at the headquarters of the United Nations Educational, Scientific and Cultural Organisation (UNESCO), the two-day event included contributions from four Nobel prize-winning physicists – Alain Aspect, Serge Haroche, Anne l’Huillier and William Phillips.

Opening remarks came from Cephas Adjej Mensah, a research director in the Ghanaian government, which last year submitted the draft resolution to the United Nations for 2025 to be proclaimed as the IYQ. “Let us commit to making quantum science accessible to all,” Mensah declared, reminding delegates that the IYQ is intended to be a global initiative, spreading the benefits of quantum equitably around the world. “We can unleash the power of quantum science and technology to make an equitable and prosperous future for all.”

The keynote address was given by l’Huillier, a quantum physicist at Lund University in Sweden, who shared the 2023 Nobel Prize for Physics with Pierre Agostini and Ferenc Krausz for their work on attosecond pulses. “Quantum mechanics has been extremely successful,” she said, explaining how it was invented 100 years ago by Werner Heisenberg on the island of Helgoland. “It has led to new science and new technology – and it’s just the beginning.”

Mission Hospital is the first in California and among a select few in the world to offer, a revolutionary, noninvasive treatment for malignant and benign liver tumors. The procedure works by using high-energy ultrasound waves that convert to sonic beams and destroy liver tumors without a single incision.

Because the innovative procedure is noninvasive, it minimizes the risk of infection, bleeding and other complications. can be used to effectively treat liver tumors in patients who are not candidates for open surgery or have been told their liver tumor is inoperable. The procedure is compatible with chemotherapy and/or radiation therapy and can also be used to treat metastatic cancer that has spread to the liver.

During the procedure, targeted ultrasound waves form bubble clouds that implode and collapse rapidly, destroying only tumor cells. After tumors are liquefied by the sonic beam, only tiny molecules remain in the body. These microscopic fragments are too small to allow the cancer to spread and regrow.

Dr. Masayo Takahashi graduated from Kyoto University’s Faculty of Medicine in 1986. In 1992, she completed her Ph.D. in Visual Pathology at Kyoto University’s Graduate School of Medicine. She first worked as a clinician, but later became interested in research following her studies in the United States in 1995. In 2005, her lab became the first in the world to successfully differentiate neural retina from embryonic stem cells. She is currently the project leader of the Laboratory for Retinal Regeneration at the RIKEN Center for Developmental Biology (CDB).

Recently in Japan they restored vision of three people using puliportent stem cells.


Then, in March 2017, Dr. Takahashi and her team made another important step forward. While the 2014 surgery had used cells generated from the patient’s own tissues, Dr. Takahashi and her team succeeded this time in the world’s first transplantation of RPE cells generated from iPS cells that originated from another person (called “allogeneic transplantation”) to treat a patient with wet-type AMD. Currently, the patient is being monitored for the possibility of rejection, which is a risk of allogeneic transplantation. Regarding the significance of the operation, Dr. Takahashi explains that “allogeneic transplantation substantially reduces the time and cost required in producing RPE cells, creating opportunities for even more patients to undergo surgeries. Hearing patients’ eager expectations firsthand when working as a clinician has also been a significant motivation.”

Dr. Takahashi’s team is currently making preparations for clinical studies that will target retinitis pigmentosa, a hereditary eye disease, by transplanting photoreceptor cells. “Having my mind set on wanting to see applications of iPS cells in treatments as quickly as possible, I have been actively involved in the creation of the regulations for their practical applications in regenerative medicine. In Japan, where clinical studies and clinical trials can be conducted at the same time, there is significant merit in the fact that research can be carried out by doctors who also work in medical settings. This helps ensure that they proceed with a sense of responsibility and strong ethics. Our advanced clinical studies have attracted the attention of researchers working in regenerative medicine in various countries. I intend to maintain a rapid pace of research so that we can treat the illnesses of as many patients as possible.”

Arizona’s magnificent Grand Canyon is painstaking result of the Colorado River’s current wearing away the planet’s surface over millions of years.

Earth, however, isn’t the only body in the Solar System with canyons and gorges. The Moon has structures comparable to Earth’s Grand Canyon; although, in the absence of liquid water, their formation mechanism has been difficult to determine.

Now, scientists believe that they have figured it out. Two huge canyons scored into the surface of the Moon were created in the wake of a giant impact – and, in stark and jaw-dropping contrast to the Grand Canyon, their creation could have taken less than 10 minutes.

Researchers have discovered clear chemical traces of decaying collagen in a duck-billed dinosaur fossil, upending previously held notions that any organic material found within such ancient fossils must be from some source of contamination.

“This research shows beyond doubt that organic biomolecules, such as proteins like collagen, appear to be present in some fossils,” says University of Liverpool materials scientist Steve Taylor.

“Our results have far-reaching implications. Firstly, it refutes the hypothesis that any organics found in fossils must result from contamination.”